Macroglial Plasticity and the Origins of Reactive Astroglia in Experimental Autoimmune Encephalomyelitis

被引:58
|
作者
Guo, Fuzheng [1 ,2 ]
Maeda, Yoshiko [1 ,2 ]
Ma, Joyce [1 ,2 ]
Delgado, Monica [1 ,2 ]
Sohn, Jiho [1 ,2 ]
Miers, Laird [1 ,2 ]
Ko, Emily Mills [1 ,2 ]
Bannerman, Peter [1 ,2 ]
Xu, Jie [1 ,2 ]
Wang, Yazhou [1 ,2 ]
Zhou, Chengji [1 ,2 ]
Takebayashi, Hirohide [3 ]
Pleasure, David [1 ,2 ]
机构
[1] Univ Calif Davis, Sch Med, Inst Pediat Regenerat Med, Sacramento, CA 95817 USA
[2] Shriners Hosp Crippled Children, Sacramento, CA 95817 USA
[3] Kumamoto Univ, Grad Sch Med Sci, Dept Morphol Neural Sci, Kumamoto 8608556, Japan
来源
JOURNAL OF NEUROSCIENCE | 2011年 / 31卷 / 33期
关键词
NEURAL STEM-CELLS; TRANSCRIPTION FACTOR OLIG2; SPINAL-CORD; PROGENITOR CELLS; GLIA GENERATE; GRAY-MATTER; ASTROCYTES; BRAIN; OLIGODENDROCYTES; LINEAGE;
D O I
10.1523/JNEUROSCI.1759-11.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accumulations of hypertrophic, intensely glial fibrillary acidic protein-positive (GFAP(+)) astroglia, which also express immunoreactive nestin and vimentin, are prominent features of multiple sclerosis lesions. The issues of the cellular origin of hypertrophic GFAP(+)/vimentin(+)/nestin(+) "reactive" astroglia and also the plasticities and lineage relationships among three macroglial progenitor populations-oligodendrocyte progenitor cells (OPCs), astrocytes and ependymal cells-during multiple sclerosis and other CNS diseases remain controversial. We used genetic fate-mappings with a battery of inducible Cre drivers (Olig2-Cre-ERT2, GFAP-Cre-ERT2, FoxJ1-Cre-ERT2 and Nestin-Cre-ERT2) to explore these issues in adult mice with myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis (EAE). The proliferative rate of spinal cord OPCs rose fivefold above control levels during EAE, and numbers of oligodendroglia increased as well, but astrogenesis from OPCs was rare. Spinal cord ependymal cells, previously reported to be multipotent, did not augment their low proliferative rate, nor give rise to astroglia or OPCs. Instead, the hypertrophic, vimentin(+)/nestin(+), reactive astroglia that accumulated in spinal cord in this multiple sclerosis model were derived by proliferation and phenotypic transformation of fibrous astroglia in white matter, and solely by phenotypic transformation of protoplasmic astroglia in gray matter. This comprehensive analysis of macroglial plasticity in EAE helps to clarify the origins of astrogliosis in CNS inflammatory demyelinative disorders.
引用
收藏
页码:11914 / 11928
页数:15
相关论文
共 50 条
  • [1] The role of reactive astrocytes in experimental autoimmune encephalomyelitis
    Peterson, Richard S.
    Tiwari-Woodruff, Seema
    Morales, Laurie Beth J.
    Sofroniew, Michael
    Voskuhl, Rhonda R.
    NEUROLOGY, 2007, 68 (12) : A339 - A339
  • [2] Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis
    Nistico, Robert
    Mori, Francesco
    Feligioni, Marco
    Nicoletti, Ferdinando
    Centonze, Diego
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 369 (1633)
  • [3] The Effect of Ribavirin on Reactive Astrogliosis in Experimental Autoimmune Encephalomyelitis
    Lavrnja, Irena
    Savic, Danijela
    Bjelobaba, Ivana
    Dacic, Sanja
    Bozic, Iva
    Parabucki, Ana
    Nedeljkovic, Nadezda
    Pekovic, Sanja
    Rakic, Ljubisav
    Stojiljkovic, Mirjana
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2012, 119 (03) : 221 - 232
  • [4] Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis
    Di Filippo, Massimiliano
    de Iure, Antonio
    Durante, Valentina
    Gaetani, Lorenzo
    Mancini, Andrea
    Sarchielli, Paola
    Calabresi, Paolo
    BRAIN RESEARCH, 2015, 1621 : 205 - 213
  • [5] From mishap to model: The origins and utility of experimental autoimmune encephalomyelitis
    Walton, Emma L.
    BIOMEDICAL JOURNAL, 2015, 38 (03) : 177 - 180
  • [6] Effect of sildenafil on neuroinflammation and synaptic plasticity pathways in experimental autoimmune encephalomyelitis
    da Rocha Araujo, Shyrlene Meiry
    Duarte-Silva, Eduardo
    de Santana Marinho, Crislayne Goncalo
    Oliveira, Wilma Helena
    Rocha de Franca, Maria Eduarda
    Los, Deniele
    Peron, Gabriela
    Tomaz, Livia
    Bonfanti, Amanda Pires
    Verinaud, Liana
    Peixoto, Christina Alves
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 85
  • [7] Experimental autoimmune encephalomyelitis
    Kanellopoulos, Jean
    BIOMEDICAL JOURNAL, 2015, 38 (03) : 181 - +
  • [8] RGC-32 Regulates Reactive Astrogliosis in Experimental Autoimmune Encephalomyelitis
    Tatomir, Alexandru
    Tegla, Cosmin A.
    Boodhoo, Dallas
    Vinh Nguyen
    Mekala, Armugam P.
    Anselmo, Freidrich
    Cudrici, Cornelia D.
    Badea, Tudor C.
    Rus, Violeta
    Rus, Horea
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 81 - 82
  • [9] Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis
    Catuneanu, Ana
    Paylor, John W.
    Winship, Ian
    Colbourne, Fred
    Kerr, Bradley J.
    PAIN, 2019, 160 (05) : 1037 - 1049
  • [10] An electrophysiologic approach to quantify impaired synaptic transmission and plasticity in experimental autoimmune encephalomyelitis
    Prochnow, Nora
    Gold, Ralf
    Haghikia, Aiden
    JOURNAL OF NEUROIMMUNOLOGY, 2013, 264 (1-2) : 48 - 53