New Boundary Conditions for One-Dimensional Network Models of Hemodynamics

被引:4
作者
Simakov, S. S. [1 ,2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[2] Sechenov Univ, Moscow 119991, Russia
[3] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
mathematical modeling; hemodynamics; boundary conditions; averaging; PULSE-WAVE PROPAGATION; BLOOD-FLOW; MATHEMATICAL-MODEL; SIMULATIONS; VESSELS; SYSTEM; 1-D;
D O I
10.1134/S0965542521120125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New boundary conditions in the regions of vessel junctions for a one-dimensional network model of hemodynamics are proposed. It is shown that these conditions ensure the continuity of the solution and its derivatives at the points of vessel junctions. In the asymptotic limit, they give solutions that coincide with the solution in one continuous vessel. Nonreflecting boundary conditions at the endpoints of the terminal vessels are proposed. Results of numerical experiments that confirm the results of theoretical analysis are presented.
引用
收藏
页码:2102 / 2117
页数:16
相关论文
共 51 条
  • [31] Mathematical Modelling of the Structure and Function of the Lymphatic System
    Mozokhina, Anastasia
    Savinkov, Rostislav
    [J]. MATHEMATICS, 2020, 8 (09)
  • [32] A global multiscale mathematical model for the human circulation with emphasis on the venous system
    Mueller, Lucas O.
    Toro, Eleuterio F.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2014, 30 (07) : 681 - 725
  • [33] One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation
    Mynard, Jonathan P.
    Smolich, Joseph J.
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2015, 43 (06) : 1443 - 1460
  • [34] Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions
    Olufsen, MS
    Peskin, CS
    Kim, WY
    Pedersen, EM
    Nadim, A
    Larsen, J
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2000, 28 (11) : 1281 - 1299
  • [35] Poroshina A.B., 2018, RUSS J BIOMECH, V22, P169, DOI DOI 10.15593/RJBIOMECH/2018.2.0
  • [36] Computational vascular fluid dynamics: Problems, models and methods
    Quarteroni, Alfio
    Tuveri, Massimiliano
    Veneziani, Alessandro
    [J]. 2000, Springer Verlag (02) : 163 - 197
  • [37] A newton-raphson pseudo-solid domain mapping technique for free and moving boundary problems: A finite element implementation
    Sackinger, PA
    Schunk, PR
    Rao, RR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) : 83 - 103
  • [38] Graph Theory for Modeling and Analysis of the Human Lymphatic System
    Savinkov, Rostislav
    Grebennikov, Dmitry
    Puchkova, Darya
    Chereshnev, Valery
    Sazonov, Igor
    Bocharov, Gennady
    [J]. MATHEMATICS, 2020, 8 (12) : 1 - 18
  • [39] Schmidt R. F., 1989, Human Physiology
  • [40] One-dimensional modelling of a vascular network in space-time variables
    Sherwin, SJ
    Franke, V
    Peiró, J
    Parker, K
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) : 217 - 250