New Boundary Conditions for One-Dimensional Network Models of Hemodynamics

被引:5
作者
Simakov, S. S. [1 ,2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[2] Sechenov Univ, Moscow 119991, Russia
[3] Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
mathematical modeling; hemodynamics; boundary conditions; averaging; PULSE-WAVE PROPAGATION; BLOOD-FLOW; MATHEMATICAL-MODEL; SIMULATIONS; VESSELS; SYSTEM; 1-D;
D O I
10.1134/S0965542521120125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New boundary conditions in the regions of vessel junctions for a one-dimensional network model of hemodynamics are proposed. It is shown that these conditions ensure the continuity of the solution and its derivatives at the points of vessel junctions. In the asymptotic limit, they give solutions that coincide with the solution in one continuous vessel. Nonreflecting boundary conditions at the endpoints of the terminal vessels are proposed. Results of numerical experiments that confirm the results of theoretical analysis are presented.
引用
收藏
页码:2102 / 2117
页数:16
相关论文
共 51 条
[1]  
Abakumov M.V., 2000, MATH MODELLING, V12, P106
[2]  
Abakumov MV, 1997, DIFF EQUAT+, V33, P895
[3]   Analysing the pattern of pulse waves in arterial networks: a time-domain study [J].
Alastruey, J. ;
Parker, K. H. ;
Peiro, J. ;
Sherwin, S. J. .
JOURNAL OF ENGINEERING MATHEMATICS, 2009, 64 (04) :331-351
[4]   Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements [J].
Alastruey, Jordi ;
Khir, Ashraf W. ;
Matthys, Koen S. ;
Segers, Patrick ;
Sherwin, Spencer J. ;
Verdonck, Pascal R. ;
Parker, Kim H. ;
Peiro, Joaquim .
JOURNAL OF BIOMECHANICS, 2011, 44 (12) :2250-2258
[5]   MULTI-BRANCHED MODEL OF THE HUMAN ARTERIAL SYSTEM [J].
AVOLIO, AP .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1980, 18 (06) :709-718
[6]   Methods of Blood Flow Modelling [J].
Bessonov, N. ;
Sequeira, A. ;
Simakov, S. ;
Vassilevskii, Yu. ;
Volpert, V. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (01) :1-25
[7]   An Anatomically Detailed Arterial Network Model for One-Dimensional Computational Hemodynamics [J].
Blanco, Pablo J. ;
Watanabe, Sansuke M. ;
Passos, Marco Aurelio R. F. ;
Lemos, Pedro A. ;
Feijoo, Raul A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) :736-753
[8]   A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling [J].
Boileau, Etienne ;
Nithiarasu, Perumal ;
Blanco, Pablo J. ;
Mueller, Lucas O. ;
Fossan, Fredrik Eikeland ;
Hellevik, Leif Rune ;
Donders, Wouter P. ;
Huberts, Wouter ;
Willemet, Marie ;
Alastruey, Jordi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2015, 31 (10) :1-33
[9]   Conservative schemes of matter transport in a system of vessels closed by the heart [J].
Borzov, A. G. ;
Mukhin, S. I. ;
Sosnin, N. V. .
DIFFERENTIAL EQUATIONS, 2012, 48 (07) :919-928
[10]   Mathematical modeling of quasi-one-dimensional hemodynamics [J].
Bunicheva, A. Ya. ;
Mukhin, S. I. ;
Sosnin, N. V. ;
Khrulenko, A. B. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (08) :1381-1392