Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy

被引:38
|
作者
Skaug, Michael J. [1 ]
Faller, Roland [1 ,2 ]
Longo, Marjorie L. [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[2] Univ Calif Davis, Grad Grp Biophys, Davis, CA 95616 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 21期
基金
美国国家卫生研究院;
关键词
PARTICLE TRACKING; LATERAL DIFFUSION; PLASMA-MEMBRANE; MONTE-CARLO; DISORDERED MEDIA; CELL-MEMBRANE; PROTEINS; MOBILITY; MODEL; SUBDIFFUSION;
D O I
10.1063/1.3596377
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process. (C) 2011 American Institute of Physics. [doi:10.1063/1.3596377]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Study of stability and structure of lipid bilayer membrane by atomic force microscope
    Sun, RG
    Zhang, J
    Qi, H
    ACTA CHIMICA SINICA, 2002, 60 (05) : 841 - 846
  • [2] Correlating Obstructed Diffusion with Obstacle Morphology using Single Molecule Tracking and AFM in Supported Lipid Bilayers
    Skaug, Michael J.
    Faller, Roland
    Longo, Marjorie L.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 667A - 667A
  • [3] Lipid Diffusion in Membrane Junctions Measured by Single-Molecule Tracking
    Ramakrishna, Vivek
    Wallace, Mark I.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 75A - 75A
  • [4] Direct visualisation of lipid bilayer cubic phases using Atomic Force Microscopy
    Rittman, Martyn
    Frischherz, Martina
    Burgmann, Flame
    Hartley, Patrick G.
    Squires, Adam
    SOFT MATTER, 2010, 6 (17) : 4058 - 4061
  • [5] Single molecule charging by atomic force microscopy
    Chotsuwan, Chuleekorn
    Blackstock, Silas C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) : 12556 - +
  • [6] Structure and dynamics of membrane lipid nanodomains using high-speed atomic force microscopy
    Milhiet, P. -E.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S108 - S108
  • [7] Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy
    Heinisch, Juergen J.
    Dupres, Vincent
    Alsteens, David
    Dufrene, Yves F.
    NATURE PROTOCOLS, 2010, 5 (04) : 670 - 677
  • [8] Measurement of the mechanical behavior of yeast membrane sensors using single-molecule atomic force microscopy
    Jürgen J Heinisch
    Vincent Dupres
    David Alsteens
    Yves F Dufrêne
    Nature Protocols, 2010, 5 : 670 - 677
  • [9] Correlating polymer structure, dynamics, and function with atomic force microscopy
    Murphy, Julia G.
    Raybin, Jonathan G.
    Sibener, Steven J.
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (07) : 1042 - 1058
  • [10] Single molecule study of xanthan conformation using atomic force microscopy
    Camesano, TA
    Wilkinson, KJ
    BIOMACROMOLECULES, 2001, 2 (04) : 1184 - 1191