Isogenies of Elliptic Curves Over Function Fields

被引:2
作者
Griffon, Richard [1 ]
Pazuki, Fabien [2 ]
机构
[1] Univ Basel, Dept Math, Spiegelgasse 1, CH-4051 Basel, Switzerland
[2] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
瑞士国家科学基金会;
关键词
DISCRIMINANT; THEOREM;
D O I
10.1093/imrn/rnab033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the j-invariant in an isogeny class. The second one is an "isogeny estimate," providing an explicit bound on the degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
引用
收藏
页码:14697 / 14740
页数:44
相关论文
共 34 条
[1]   Torsion points on elliptic curves over function fields and a theorem of Igusa [J].
Bandini, Andrea ;
Longhi, Ignazio ;
Vigni, Stefano .
EXPOSITIONES MATHEMATICAE, 2009, 27 (03) :175-209
[2]  
Bosch S., 1990, NERON MODELS, V21
[3]   Heights and isogenies of Drinfeld modules [J].
Breuer, Florian ;
Pazuki, Fabien ;
Razafinjatovo, Mahefason Heriniaina .
ACTA ARITHMETICA, 2021, 197 (02) :111-128
[5]  
David S, 1999, MATH ANN, V315, P97, DOI 10.1007/s002080050319
[6]  
Diamond F., 1995, CMS Conf. Proc., V17, P39
[7]  
Dwork B., 1994, Ann. of Math. Stud., V133
[8]   Theorem of the periods and minimum degrees of isogenies [J].
Gaudron, Eric ;
Remond, Gael .
COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (02) :343-403
[9]   Special points on fibered powers of elliptic surfaces [J].
Habegger, Philipp .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 685 :143-179
[10]  
Husemoller D., 2004, GRADUATE TEXTS MATH, V111