Bifunctional MnOx electrocatalysts for zinc-air batteries in alkaline electrolytes

被引:5
作者
Renderos, Genesis D. [1 ,2 ]
Kuang, Jason [1 ,3 ]
Takeuchi, Kenneth J. [1 ,2 ,3 ,4 ]
Takeuchi, Esther S. [1 ,2 ,3 ,4 ]
Marschilok, Amy C. [1 ,2 ,3 ,4 ]
Wang, Lei [1 ,4 ]
机构
[1] SUNY Stony Brook, Inst Electrochemically Stored Energy, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Interdisciplinary Sci Dept, Upton, NY 11973 USA
关键词
Manganese oxides; zinc-air; alkaline electrolyte; energy storage; OXYGEN REDUCTION REACTION; NITROGEN-DOPED GRAPHENE; MANGANESE OXIDE; MN3O4; NANOPARTICLES; EVOLUTION REACTION; CARBON NANOTUBES; PERFORMANCE; CATALYST; REDOX; MN2O3;
D O I
10.1142/S1793604721300152
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The growing need for rechargeable zinc-air batteries has led researchers to look for low-cost and robust catalytic candidates. Manganese oxides are promising for their low toxicity, natural abundance and low cost. In this review, we summarize the versatility of manganese oxides which is achievable by adjusting synthetic parameters. In addition, we highlight how manganese oxides impact zinc-air electrochemistry.
引用
收藏
页数:7
相关论文
共 47 条
[1]   A Gas Diffusion Layer Impregnated with Mn3O4-Decorated N-Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Zinc-Air Batteries [J].
Aasen, Drew ;
Clark, Michael ;
Ivey, Douglas G. .
BATTERIES & SUPERCAPS, 2019, 2 (10) :882-893
[2]   Electrochemical performance of nanosized MnO2 synthesized by redox route using biological reducing agents [J].
Abuzeid, Hanaa M. ;
Hashem, Ahmed M. ;
Kaus, Maximilian ;
Knapp, Michael ;
Indris, Sylvio ;
Ehrenberg, Helmut ;
Mauger, Alain ;
Julien, Christian M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 746 :227-237
[3]   Nanorods of manganese oxalate:: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4) [J].
Ahmad, T ;
Ramanujachary, KV ;
Lofland, SE ;
Ganguli, AK .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (23) :3406-3410
[4]  
Ashik U., 2018, SYNTHESIS INORGANIC, P19
[5]   Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence [J].
Augustin, Matthias ;
Fenske, Daniela ;
Bardenhagen, Ingo ;
Westphal, Anne ;
Knipper, Martin ;
Plaggenborg, Thorsten ;
Kolny-Olesiak, Joanna ;
Parisi, Juergen .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :47-59
[6]   Materials science aspects of zinc-air batteries: A review [J].
Caramia V. ;
Bozzini B. .
Materials for Renewable and Sustainable Energy, 2014, 3 (02)
[7]   Thermally driven phase transition of manganese oxide on carbon cloth for enhancing the performance of flexible all-solid-state zinc-air batteries [J].
Chen, Song ;
Shu, Xinxin ;
Wang, Huaisheng ;
Zhang, Jintao .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (34) :19719-19727
[8]   Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery [J].
Chen, Zhu ;
Yu, Aiping ;
Ahmed, Raihan ;
Wang, Haijiang ;
Li, Hui ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2012, 69 :295-300
[9]   High Performance Oxygen Reduction/Evolution Electrodes for Zinc-Air Batteries Prepared by Atomic Layer Deposition of MnOx [J].
Clark, M. P. ;
Xiong, M. ;
Cadien, K. ;
Ivey, D. G. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :603-613
[10]   Manganese-cobalt mixed oxide film as a bifunctional catalyst for rechargeable zinc-air batteries [J].
Davari, Elaheh ;
Johnson, Aliesha D. ;
Mittal, Akshat ;
Xiong, Ming ;
Ivey, Douglas G. .
ELECTROCHIMICA ACTA, 2016, 211 :735-743