Multisource Remote Sensing Data Classification With Graph Fusion Network

被引:0
作者
Du, Xingqian [1 ,2 ]
Zheng, Xiangtao [1 ]
Lu, Xiaoqiang [1 ]
Doudkin, Alexander A. [3 ,4 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Acad Sci Belarus, Lab Syst Identificat, United Inst Informat Problems, Minsk 220012, BELARUS
[4] Belarusian State Univ Informat & Radioelect BSUIR, Dept Comp, Minsk 220012, BELARUS
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 12期
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Data mining; Fuses; Correlation; Task analysis; Dimensionality reduction; Classification; deep learning; hyperspectral image (HSI); light detection and ranging (LiDAR); remote sensing; EXTINCTION PROFILES; LIDAR; IMAGES; FOREST; PCA;
D O I
10.1109/TGRS.2020.3047130
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The land cover classification has been an important task in remote sensing. With the development of various sensors technologies, carrying out classification work with multisource remote sensing (MSRS) data has shown an advantage over using a single type of data. Hyperspectral images (HSIs) are able to represent the spectral properties of land cover, which is quite common for land cover understanding. Light detection and ranging (LiDAR) images contain altitude information of the ground, which is greatly helpful with urban scene analysis. Current HSI and LiDAR fusion methods perform feature extraction and feature fusion separately, which cannot well exploit the correlation of data sources. In order to make full use of the correlation of multisource data, an unsupervised feature extraction-fusion network for HSI and LiDAR, which utilizes feature fusion to guide the feature extraction procedure, is proposed in this article. More specifically, the network takes multisource data as input and directly output the unified fused feature. A multimodal graph is constructed for feature fusion, and graph-based loss functions including Laplacian loss and t-distributed stochastic neighbor embedding (t-SNE) loss are utilized to constrain the feature extraction network. Experimental results on several data sets demonstrate the proposed network can achieve more excellent classification performance than some state-of-the-art methods.
引用
收藏
页码:10062 / 10072
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 2014, P SPIE ALGORITHMS TE
[2]   3-D Deep Learning Approach for Remote Sensing Image Classification [J].
Ben Hamida, Amina ;
Benoit, Alexandre ;
Lambert, Patrick ;
Ben Amar, Chokri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4420-4434
[3]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[4]   Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification [J].
Cao, Jiayan ;
Wang, Bin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) :1805-1809
[5]  
Chen C, 2019, INT GEOSCI REMOTE SE, P2475, DOI [10.1109/igarss.2019.8898443, 10.1109/IGARSS.2019.8898443]
[6]   Deep Fusion of Remote Sensing Data for Accurate Classification [J].
Chen, Yushi ;
Li, Chunyang ;
Ghamisi, Pedram ;
Jia, Xiuping ;
Gu, Yanfeng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) :1253-1257
[7]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[8]   A New Low-Rank Representation Based Hyperspectral Image Denoising Method for Mineral Mapping [J].
Gao, Lianru ;
Yao, Dan ;
Li, Qingting ;
Zhuang, Lina ;
Zhang, Bing ;
Bioucas-Dias, Jose M. .
REMOTE SENSING, 2017, 9 (11)
[9]   Hyperspectral and LiDAR Data Classification Using Kernel Collaborative Representation Based Residual Fusion [J].
Ge, Chiru ;
Du, Qian ;
Li, Wei ;
Li, Yunsong ;
Sun, Weiwei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) :1963-1973
[10]   Multisource and Multitemporal Data Fusion in Remote Sensing A comprehensive review of the state of the art [J].
Ghamisi, Pedram ;
Rasti, Behnood ;
Yokoya, Naoto ;
Wang, Qunming ;
Hoefle, Bernhard ;
Bruzzone, Lorenzo ;
Bovolo, Francesca ;
Chi, Mingmin ;
Anders, Katharina ;
Gloaguen, Richard ;
Atkinson, Peter M. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (01) :6-39