Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy

被引:29
作者
Ibrahim, Rabha W. [1 ]
Jalab, Hamid A. [2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
关键词
fractional calculus; fractional differential equation; entropy solution;
D O I
10.3390/e17053172
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we introduce conditions for the existence of solutions for an iterative functional differential equation of fractional order. We prove that the solutions of the above class of fractional differential equations are bounded by Tsallis entropy. The method depends on the concept of Hyers-Ulam stability. The arbitrary order is suggested in the sense of Riemann-Liouville calculus.
引用
收藏
页码:3172 / 3181
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 1964, Problem in Modern Mathematics
[2]   Hyers-Ulam Stability of Polynomial Equations [J].
Bidkham, M. ;
Mezerji, H. A. Soleiman ;
Gordji, M. Eshaghi .
ABSTRACT AND APPLIED ANALYSIS, 2010,
[3]   Hyers-Ulam stability of Euler's equation [J].
Cimpean, Dalia Sabina ;
Popa, Dorian .
APPLIED MATHEMATICS LETTERS, 2011, 24 (09) :1539-1543
[4]  
Hyers D.H., 1983, Teubner-Texte Math., V57, P140
[5]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[6]  
Hyers DH., 1992, Aequationes Math., V44, P125, DOI [10.1007/BF01830975, DOI 10.1007/BF01830975]
[7]  
Ibrahim R. W., 2015, APPL COMPUT IN PRESS
[8]  
Ibrahim R. W., 2011, ELECT J QUAL THEORY, P64
[9]   Existence of Iterative Cauchy Fractional Differential Equation [J].
Ibrahim, Rabha W. .
JOURNAL OF MATHEMATICS, 2013, 2013
[10]   Existence and uniqueness for a class of iterative fractional differential equations [J].
Ibrahim, Rabha W. ;
Kilicman, Adem ;
Damag, Faten H. .
ADVANCES IN DIFFERENCE EQUATIONS, 2015, :1-13