Van der Waals two-color infrared photodetector

被引:152
作者
Wu, Peisong [1 ,2 ]
Ye, Lei [3 ,4 ]
Tong, Lei [3 ,4 ]
Wang, Peng [1 ]
Wang, Yang [1 ,5 ]
Wang, Hailu [1 ,2 ]
Ge, Haonan [1 ,2 ]
Wang, Zhen [1 ,2 ]
Gu, Yue [1 ,2 ]
Zhang, Kun [1 ]
Yu, Yiye [1 ,3 ,4 ]
Peng, Meng [1 ,3 ,4 ]
Wang, Fang [1 ]
Huang, Min [1 ]
Zhou, Peng [5 ]
Hu, Weida [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Hubei Yangtze Memory Labs, Wuhan 430205, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430205, Hubei, Peoples R China
[5] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
DETECTOR;
D O I
10.1038/s41377-021-00694-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of similar to 0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 x 10(9) cm Hz(1/2) W-1 at 3.5 mu m and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[2]  
[Anonymous], 2016, NAT PHOTONICS, DOI DOI 10.1038/NPHOTON.2015.274
[3]   Graphene-semiconductor heterojunction sheds light on emerging photovoltaics [J].
Behura, Sanjay K. ;
Wang, Chen ;
Wen, Yu ;
Berry, Vikas .
NATURE PHOTONICS, 2019, 13 (05) :312-318
[4]   Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J].
Bullock, James ;
Amani, Matin ;
Cho, Joy ;
Chen, Yu-Ze ;
Ahn, Geun Ho ;
Adinolfi, Valerio ;
Shrestha, Vivek Raj ;
Gao, Yang ;
Crozier, Kenneth B. ;
Chueh, Yu-Lun ;
Javey, Ali .
NATURE PHOTONICS, 2018, 12 (10) :601-+
[5]   IMPROVED 2-WAVELENGTH DEMULTIPLEXING INGAASP PHOTODETECTOR [J].
CAMPBELL, JC ;
DENTAI, AG ;
LEE, TP ;
BURRUS, CA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1980, 16 (06) :601-603
[6]   Large-scale phase retrieval [J].
Chang, Xuyang ;
Bian, Liheng ;
Zhang, Jun .
ELIGHT, 2021, 1 (01)
[7]   Unipolar barrier photodetectors based on van der Waals heterostructures [J].
Chen, Yunfeng ;
Wang, Yang ;
Wang, Zhen ;
Gu, Yue ;
Ye, Yan ;
Chai, Xuliang ;
Ye, Jiafu ;
Chen, Yan ;
Xie, Runzhang ;
Zhou, Yi ;
Hu, Zhigao ;
Li, Qing ;
Zhang, Lili ;
Wang, Fang ;
Wang, Peng ;
Miao, Jinshui ;
Wang, Jianlu ;
Chen, Xiaoshuang ;
Lu, Wei ;
Zhou, Peng ;
Hu, Weida .
NATURE ELECTRONICS, 2021, 4 (05) :357-363
[8]   Highlighting photonics: looking into the next decade [J].
Chen, Zhigang ;
Segev, Mordechai .
ELIGHT, 2021, 1 (01)
[9]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.52, 10.1038/natrevmats2016.52]
[10]   Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1-xSbx type-II superlattices [J].
Haddadi, A. ;
Chevallier, R. ;
Chen, G. ;
Hoang, A. M. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2015, 106 (01)