Coarse Non-Amenability and Coarse Embeddings

被引:32
作者
Arzhantseva, Goulnara [1 ]
Guentner, Erik [2 ]
Spakula, Jan [3 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
[3] Univ Munster, Math Inst, D-48149 Munster, Germany
关键词
Amenability; coarse embeddings; graph coverings; EXACTNESS; SPACES;
D O I
10.1007/s00039-012-0145-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the first example of a coarsely non-amenable (= without Guoliang Yu's property A) metric space with bounded geometry which coarsely embeds into a Hilbert space.
引用
收藏
页码:22 / 36
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2008, GRADUATE STUDIES MAT
[2]   Property a, partial translation structures, and uniform embeddings in groups [J].
Brodzki, J. ;
Niblo, G. A. ;
Wright, N. J. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 :479-497
[3]  
Gromov M. L., 1993, London Math. Soc. Lecture Note Ser., V182, P1
[4]   Exactness, and the Novikov conjecture (vol 41, pg 411, 2002) [J].
Guentner, E ;
Kaminker, J .
TOPOLOGY, 2002, 41 (02) :419-420
[5]  
Guentner E, 2002, TOPOLOGY, V41, P411, DOI 10.1016/S0040-9383(00)00036-7
[6]  
Haglund F., 1998, Geom. Topol. Monogr., V1, P181
[7]  
Hatcher A., 2002, Algebraic topology
[8]  
Higson N, 2000, J REINE ANGEW MATH, V519, P143
[9]  
Higson N., 2003, SPRINGER LECT NOTES, V1831, P253
[10]  
Lyndon R. C., 1977, ERGEBNISSE MATH IHRE, V89