Global parametrices and dispersive estimates for variable coefficient wave equations

被引:53
作者
Metcalfe, Jason [1 ]
Tataru, Daniel [2 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
2ND-ORDER HYPERBOLIC OPERATORS; NONSMOOTH COEFFICIENTS; SCHRODINGER-EQUATIONS; SMOOTHING PROPERTIES; STRICHARTZ; INEQUALITY; EXISTENCE; EXTERIOR; METRICS; DECAY;
D O I
10.1007/s00208-011-0714-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider variable coefficient time dependent wave equations in . Using phase space methods we construct outgoing parametrices and prove Strichartz type estimates globally in time. This is done in the context of C (2) metrics which satisfy a weak asymptotic flatness condition at infinity.
引用
收藏
页码:1183 / 1237
页数:55
相关论文
共 39 条
[1]   On the Morawetz - Keel-Smith-Sogge inequality for the wave equation on a curved background [J].
Alinhac, Serge .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2006, 42 (03) :705-720
[2]   On global Strichartz estimates for non-trapping metrics [J].
Bouclet, Jean-Marc ;
Tzvetkov, Nikolay .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) :1661-1682
[3]   LP-LP' ESTIMATES FOR WAVE-EQUATION [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :251-254
[4]  
CONSTANTIN P, 1987, CR ACAD SCI I-MATH, V304, P407
[5]   Microlocal dispersive smoothing for the Schrodinger equation [J].
Craig, W ;
Kappeler, T ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (08) :769-860
[6]  
Delort J.-M., 1992, FBI TRANSFORMATION 2
[7]   Smoothing effects for Schrodinger evolution equation and global behavior of geodesic flow [J].
Doi, S .
MATHEMATISCHE ANNALEN, 2000, 318 (02) :355-389
[8]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[9]  
Folland G.B., 1989, Annals of Mathematics Studies
[10]   SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) :163-188