Existence and Stability of Periodic Contrast Structures in the Reaction-Advection-Diffusion Problem

被引:20
作者
Nefedov, N. N. [1 ]
Nikulin, E. I. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Dept Math, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
SINGULARLY PERTURBED PROBLEMS; DIFFERENTIAL-INEQUALITIES; INTERNAL LAYERS;
D O I
10.1134/S1061920815020089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A singularly perturbed periodic problem for a parabolic reaction-advection-diffusion equation at low advection is studied. The case when there is an internal transition layer under unbalanced nonlinearity is considered. An asymptotic expansion of a solution is constructed. To substantiate the asymptotics thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is studied; the proof uses the Krein-Rutman theorem.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 15 条
[1]  
Amman H., 1978, PERIODIC SOLUTIONS S
[2]   Front Motion in the Parabolic Reaction-Diffusion Problem [J].
Bozhevol'nov, Yu. V. ;
Nefedov, N. N. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (02) :264-273
[3]  
Hess P., 1991, Periodic-Parabolic Boundary Value Problems and Positivity
[4]   Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations [J].
Nefedov, N. N. ;
Recke, L. ;
Schneider, K. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) :90-103
[5]  
Nefedov N. N., 2000, Differ. Equations, V36, P262, DOI [10.1007/BF02754216, DOI 10.1007/BF02754216]
[6]  
Nefedov N, 2013, LECT NOTES COMPUT SC, V8236, P62, DOI 10.1007/978-3-642-41515-9_6
[7]   An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability [J].
Nefedov, NN .
DIFFERENTIAL EQUATIONS, 2000, 36 (02) :298-305
[8]  
Nefedov NN, 1995, DIFF EQUAT+, V31, P1077
[9]  
Pao CV., 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3
[10]   Singularly perturbed problems with boundary and internal layers [J].
Vasil'eva, A. B. ;
Butuzov, V. F. ;
Nefedov, N. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 268 (01) :258-273