Oxidation of ammonia in dilute aqueous solutions over graphite-supported α- and β-lead dioxide electrodes (PbO2@G)

被引:81
作者
Shih, Yu-Jen [1 ,3 ]
Huang, Yao-Hui [1 ]
Huang, C. P. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[2] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA
[3] Natl Sun Yat Sen Univ, Inst Environm Engn, Kaohsiung 804, Taiwan
关键词
Graphite; Lead oxide; Pseudocapacitance; Ammonia oxidation; Nitrogen selectivity; Constant potential; ELECTROCHEMICAL OXIDATION; DOUBLE-LAYER; ELECTROOXIDATION; DEGRADATION; VOLTAMMETRY; BETA-PBO2; NITROGEN; WATER; ELECTROCATALYSIS; CHLORINATION;
D O I
10.1016/j.electacta.2017.10.060
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphite-supported a-and beta-PbO2 electrodes (PbO2@G) were prepared by electrochemical deposition at appropriate potentials with regard to Pb(II)/PbO2 redox couple under alkaline and acidic conditions, respectively, for studying the direct electro-oxidation of ammonia in aqueous solutions. Results of surface characterization including scanning electron microscopy (SEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) indicated the presence of polymorphs of PbO2@G. Cyclic voltammetry (CV) of the electrolyte containing NH3 indicated mediation of electron transfer by PbO2. At the onset potential of ca. +1.0 to +1.45 V (vs. Hg/HgO), a pathway of NH3 oxidation to nitrogen byproducts, namely, N-2, NO2- , and NO3- was proposed. The removal efficiency and selective conversion of ammonia (0.1 M Na2SO4, pH 11, 25 degrees C) on PbO2@G was determined based on controlled potential experiments. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:444 / 454
页数:11
相关论文
共 40 条
[1]   Ammonia-fed fuel cells: a comprehensive review [J].
Afif, Ahmed ;
Radenahmad, Nikdalila ;
Cheok, Quentin ;
Shams, Shahriar ;
Kim, Jung H. ;
Azad, Abul K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :822-835
[2]   Oxidation of ammonia using PtRh/C electrocatalysts: Fuel cell and electrochemical evaluation [J].
Assumpcao, Monica H. M. T. ;
Piasentin, Ricardo M. ;
Hammer, Peter ;
De Souza, Rodrigo F. B. ;
Buzzo, Guilherme S. ;
Santos, Mauro C. ;
Spinace, Estevam V. ;
Neto, Almir O. ;
Silva, Julio Cesar M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 174 :136-144
[3]  
Bard L.R.F. A. J., 2001, ELECTROCHEMICAL METH
[5]   Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism [J].
Chen, Jianmeng ;
Xia, Yijing ;
Dai, Qizhou .
ELECTROCHIMICA ACTA, 2015, 165 :277-287
[6]   Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode [J].
Chen, Yong ;
Li, Hongyi ;
Liu, Weijing ;
Tu, Yong ;
Zhang, Yaohui ;
Han, Weiqing ;
Wang, Lianjun .
CHEMOSPHERE, 2014, 113 :48-55
[7]   Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].
Conway, BE ;
Pell, WG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :637-644
[8]   Electrochemical oxidation metronidazole with Co modified PbO2 electrode: Degradation and mechanism [J].
Dai, Qizhou ;
Zhou, Jiazhong ;
Weng, Mili ;
Luo, Xubiao ;
Feng, Daolun ;
Chen, Jianmeng .
SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 166 :109-116
[9]   Analysis of ammonia electro-oxidation kinetics using a rotating disk electrode [J].
Diaz, Luis A. ;
Valenzuela-Muniz, Ana ;
Muthuvel, Madhivanan ;
Botte, Gerardine G. .
ELECTROCHIMICA ACTA, 2013, 89 :413-421
[10]   Review: Mechanisms of ammonium toxicity and the quest for tolerance [J].
Esteban, Raquel ;
Ariz, Idoia ;
Cruz, Cristina ;
Fernando Moran, Jose .
PLANT SCIENCE, 2016, 248 :92-101