maplet: an extensible R toolbox for modular and reproducible metabolomics pipelines

被引:15
作者
Chetnik, Kelsey [1 ]
Benedetti, Elisa [1 ]
Gomari, Daniel P. [2 ]
Schweickart, Annalise [1 ]
Batra, Richa [1 ]
Buyukozkan, Mustafa [1 ]
Wang, Zeyu [1 ]
Arnold, Matthias [2 ]
Zierer, Jonas [1 ,4 ]
Suhre, Karsten [3 ]
Krumsiek, Jan [1 ]
机构
[1] Weill Cornell Med, Englander Inst Precis Med, Dept Physiol & Biophys, Inst Computat Biomed, New York, NY 10021 USA
[2] Helmholtz Zentrum Munchen, Inst Computat Biol, German Res Ctr Environm Hlth, D-85764 Neuherberg, Germany
[3] Weill Cornell Med Coll Qatar Educ City, Dept Physiol & Biophys, Doha, Qatar
[4] Novartis, Novartis Inst Biomed Res NIBR, CH-4056 Basel, Switzerland
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btab741
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article presents maplet, an open-source R package for the creation of highly customizable, fully reproducible statistical pipelines for metabolomics data analysis. It builds on the SummarizedExperiment data structure to create a centralized pipeline framework for storing data, analysis steps, results and visualizations. maplet's key design feature is its modularity, which offers several advantages, such as ensuring code quality through the maintenance of individual functions and promoting collaborative development by removing technical barriers to code contribution. With over 90 functions, the package includes a wide range of functionalities, covering many widely used statistical approaches and data visualization techniques.
引用
收藏
页码:1168 / 1170
页数:3
相关论文
共 13 条
[1]  
[Anonymous], 2016, NAT NEWS, DOI DOI 10.1016/j.future.2011.08.004
[2]  
Bache S.M., 2020, MAGRITTR FORWARD PIP
[3]  
Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a
[4]   Recommendations to enhance rigor and reproducibility in biomedical research [J].
Brito, Jaqueline J. ;
Li, Jun ;
Moore, Jason H. ;
Greene, Casey S. ;
Nogoy, Nicole A. ;
Garmire, Lana X. ;
Mangul, Serghei .
GIGASCIENCE, 2020, 9 (06)
[5]   MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data [J].
Chong, Jasmine ;
Xia, Jianguo .
BIOINFORMATICS, 2018, 34 (24) :4313-4314
[6]   MetaboLights: a resource evolving in response to the needs of its scientific community [J].
Haug, Kenneth ;
Cochrane, Keeva ;
Nainala, Venkata Chandrasekhar ;
Williams, Mark ;
Chang, Jiakang ;
Jayaseelan, Kalai Vanii ;
O'Donovan, Claire .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D440-D444
[7]  
Huber W, 2015, NAT METHODS, V12, P115, DOI [10.1038/NMETH.3252, 10.1038/nmeth.3252]
[8]  
Lloyd G.R., 2021, STRUCTTOOLBOX DATA P
[9]  
Morgan M, 2021, SUMMARIZEDEXPERIMENT
[10]   Ten Simple Rules for Reproducible Computational Research [J].
Sandve, Geir Kjetil ;
Nekrutenko, Anton ;
Taylor, James ;
Hovig, Eivind .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (10)