Deep Learning-Assisted Multiphoton Microscopy to Reduce Light Exposure and Expedite Imaging in Tissues With High and Low Light Sensitivity

被引:13
作者
McAleer, Stephen [1 ,2 ]
Fast, Alexander [3 ,4 ]
Xue, Yuntian [5 ]
Seiler, Magdalene J. [6 ,7 ,8 ]
Tang, William C. [5 ]
Balu, Mihaela [3 ]
Baldi, Pierre [1 ,2 ]
Browne, Andrew W. [5 ,8 ,9 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, 6210 Donald Bren Hall, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Inst Genom & Bioinformat, Irvine, CA USA
[3] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Irvine, CA 92715 USA
[4] InfraDerm LLC, Irvine, CA USA
[5] Univ Calif Irvine, Dept Biomed Engn, 402 E Peltason Dr, Irvine, CA 92617 USA
[6] Univ Calif Irvine, Dept Phys Med & Rehabil, Irvine, CA USA
[7] Univ Calif Irvine, Sue & Bill Gross Stem Cell Res Ctr, Irvine, CA USA
[8] Univ Calif Irvine, Gavin Herbert Eye Inst, Dept Ophthalmol, Irvine, CA USA
[9] Univ Calif Irvine, Inst Clin & Translat Sci, Irvine, CA USA
基金
美国国家卫生研究院;
关键词
two-photon; functional imaging; deep learning; phototoxicity; NEURAL-NETWORKS; VALIDATION; DAMAGE;
D O I
10.1167/tvst.10.12.30
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Two-photon excitation fluorescence (2PEF) reveals information about tissue function. Concerns for phototoxicity demand lower light exposure during imaging. Reducing excitation light reduces the quality of the image by limiting fluorescence emission. We applied deep learning (DL) super-resolution techniques to images acquired from low light exposure to yield high-resolution images of retinal and skin tissues. Methods: We analyzed two methods: a method based on U-Net and a patch-based regression method using paired images of skin (550) and retina (1200), each with low- and high-resolution paired images. The retina dataset was acquired at low- and high laser powers from retinal organoids, and the skin dataset was obtained from averaging 7 to 15 frames or 70 frames. Mean squared error (MSE) and the structural similarity index measure (SSIM) were outcome measures for DL algorithm performance. Results: For the skin dataset, the patches method achieved a lower MSE (3.768) compared with U-Net (4.032) and a high SSIM (0.824) compared with U-Net (0.783). For the retinal dataset, the patches method achieved an average MSE of 27,611 compared with 146,855 for the U-Net method and an average SSIM of 0.636 compared with 0.607 for the U-Net method. The patches method was slower (303 seconds) than the U-Net method (<1 second). Conclusions: DL can reduce excitation light exposure in 2PEF imaging while preserving image quality metrics. Translational Relevance: DL methods will aid in translating 2PEF imaging from bench-top systems to in vivo imaging of light-sensitive tissues such as the retina.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Soft lithography: masters on demand [J].
Abdelgawad, Mohamed ;
Watson, Michael W. L. ;
Young, Edmond W. K. ;
Mudrik, Jared M. ;
Ungrin, Mark D. ;
Wheeler, Aaron R. .
LAB ON A CHIP, 2008, 8 (08) :1379-1385
[2]  
[Anonymous], 2012, Adv. Neural Inf. Process. Syst.
[3]   Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation [J].
Asaoka, Ryo ;
Tanito, Masaki ;
Shibata, Naoto ;
Mitsuhashi, Keita ;
Nakahara, Kenichi ;
Fujino, Yuri ;
Matsuura, Masato ;
Murata, Hiroshi ;
Tokumo, Kana ;
Kiuchi, Yoshiaki .
OPHTHALMOLOGY GLAUCOMA, 2019, 2 (04) :224-231
[4]   NEURAL NETWORKS FOR FINGERPRINT RECOGNITION [J].
BALDI, P ;
CHAUVIN, Y .
NEURAL COMPUTATION, 1993, 5 (03) :402-418
[5]   Deep Learning in Biomedical Data Science [J].
Baldi, Pierre .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 :181-205
[6]  
Balu M, 2018, patent application, Patent No. [WO2018075562, 2018075562]
[7]   Rapid mesoscale multiphoton microscopy of human skin [J].
Balu, Mihaela ;
Mikami, Hideharu ;
Hou, Jue ;
Potma, Eric O. ;
Tromberg, Bruce J. .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (11) :4375-4387
[8]   Structural and Functional Characterization of Human Stem-Cell-Derived Retinal Organoids by Live Imaging [J].
Browne, Andrew W. ;
Arnesano, Cosimo ;
Harutyunyan, Narine ;
Khuu, Thien ;
Martinez, Juan Carlos ;
Pollack, Harvey A. ;
Koos, David S. ;
Lee, Thomas C. ;
Fraser, Scott E. ;
Moats, Rex A. ;
Aparicio, Jennifer G. ;
Cobrinik, David .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (09) :3311-3318
[9]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[10]   Using Zinc Finger Nuclease Technology to Generate CRX-Reporter Human Embryonic Stem Cells as a Tool to Identify and Study the Emergence of Photoreceptors Precursors During Pluripotent Stem Cell Differentiation [J].
Collin, Joseph ;
Mellough, Carla B. ;
Dorgau, Birthe ;
Przyborski, Stefan ;
Moreno-Gimeno, Inmaculada ;
Lako, Majlinda .
STEM CELLS, 2016, 34 (02) :311-321