Discretization with variable time steps of an evolution equation with a positive-type memory term

被引:93
作者
McLean, W
Thomee, V
Wahlbin, LB
机构
[1] UNIV NEW S WALES, SCH MATH, SYDNEY, NSW 2052, AUSTRALIA
[2] CHALMERS UNIV TECHNOL, DEPT MATH, S-41296 GOTHENBURG, SWEDEN
[3] CORNELL UNIV, DEPT MATH, ITHACA, NY 14853 USA
基金
美国国家科学基金会;
关键词
evolution equation; memory term; variable step size;
D O I
10.1016/0377-0427(95)00025-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the linearized form of an evolution equation used to model viscoelasticity and heat conduction in materials with memory. The equation is discretized in time using several schemes based on the backward Euler and Crank-Nicolson methods, and incorporating appropriate quadratures for the memory term. By permitting variable time steps, we remove a restriction present in earlier related work by the first two authors.
引用
收藏
页码:49 / 69
页数:21
相关论文
共 5 条
[1]   POLYNOMIAL SPLINE COLLOCATION METHODS FOR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS [J].
BRUNNER, H .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (02) :221-239
[2]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[3]  
HUANG YQ, 1992, IN PRESS P ICCDD BEI
[4]   NUMERICAL-SOLUTION OF AN EVOLUTION EQUATION WITH A POSITIVE-TYPE MEMORY TERM [J].
MCLEAN, W ;
THOMEE, V .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1993, 35 :23-70
[5]   POSITIVE QUADRATURES FOR VOLTERRA EQUATIONS [J].
NEVANLINNA, O .
COMPUTING, 1976, 16 (04) :349-357