Si(CO)y Negative Electrodes for Li-Ion Batteries

被引:10
作者
Cao, Yidan [1 ,2 ,3 ,4 ]
Hans, Sophie [3 ]
Liese, Julia [3 ,5 ]
Werner-Zwanziger, Ulrike [3 ,6 ]
Wang, Jun [3 ]
Bennett, J. Craig [7 ]
Dunlap, R. A. [4 ,8 ]
Obrovac, M. N. [3 ,4 ,6 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Guangdong, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Inst Mat Res, Shenzhen 518055, Guangdong, Peoples R China
[3] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[4] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[5] Ludwig Maximilians Univ Munchen, Fac Phys, D-80539 Munich, Germany
[6] Dalhousie Univ, Clean Technol Res Inst, Halifax, NS B3H 4R2, Canada
[7] Acadia Univ, Dept Phys, Wolfville, NS B4P 2R6, Canada
[8] Dalhousie Univ, Coll Sustainabil, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
SIOX ANODE; IR-SPECTRA; PERFORMANCE; ALLOY; MECHANOCHEMISTRY; NANOSTRUCTURES; TEMPERATURE; ATMOSPHERE; NITRIDES; FILMS;
D O I
10.1021/acs.chemmater.1c01989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Si(CO)(y) (0 <= y <= 0.43) alloys were synthesized by reactive gas milling silicon in CO2 at room temperature. Silicon reacts with CO2 rapidly during milling, incorporating C and O in a 1:1 ratio to form alloys consisting of Si nanograins dispersed in an amorphous Si-O-C matrix. The capacity behavior of these alloys suggests the formation of inactive SiC and Li4SiO4 during the first lithiation. This implies that such alloys can have significantly greater initial coulombic efficiency (ICE) than SiOx at any given gravimetric or volumetric capacity.
引用
收藏
页码:7386 / 7395
页数:10
相关论文
共 52 条
[1]   Controllable Synthesis of Carbon-Coated SiOx Particles through a Simultaneous Reaction between the Hydrolysis-Condensation of Tetramethyl Orthosilicate and the Polymerization of 3-Aminophenol [J].
Cao, Kiet Le Anh ;
Arif, Aditya F. ;
Kamikubo, Kazuki ;
Izawa, Takafumi ;
Iwasaki, Hideharu ;
Ogi, Takashi .
LANGMUIR, 2019, 35 (42) :13681-13692
[2]   Si-TiN alloy Li-ion battery anode materials prepared by reactive N2 gas milling [J].
Cao, Simeng ;
Bennett, J. Craig ;
Wang, Yukun ;
Gracious, Shayne ;
Zhu, Min ;
Obrovac, M. N. .
JOURNAL OF POWER SOURCES, 2019, 438
[3]   Electrochemistry and Thermal Behavior of SiOxMade by Reactive Gas Milling [J].
Cao, Yidan ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (11)
[4]   A Simple Synthesis Route for High-Capacity SiOx Anode Materials with Tunable Oxygen Content for Lithium-Ion Batteries [J].
Cao, Yidan ;
Bennett, J. Craig ;
Dunlap, R. A. ;
Obrovac, M. N. .
CHEMISTRY OF MATERIALS, 2018, 30 (21) :7418-7422
[5]   Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite [J].
Chen, XH ;
Yang, HS ;
Wu, GT ;
Wang, M ;
Deng, FM ;
Zhang, XB ;
Peng, JC ;
Li, WZ .
JOURNAL OF CRYSTAL GROWTH, 2000, 218 (01) :57-61
[6]   Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling [J].
Chen, Y ;
Halstead, T ;
Williams, JS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996, 206 (01) :24-29
[7]   Controlled reduction of NiO using reactive ball milling under hydrogen atmosphere leading to Ni-NiO nanocomposites [J].
Doppiu, S ;
Langlais, V ;
Sort, J ;
Suriñach, S ;
Baró, MD ;
Zhang, Y ;
Hadjipanayis, G ;
Nogués, J .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5664-5669
[8]   Combinatorial Investigations of Ni-Si Negative Electrode Materials for Li-Ion Batteries [J].
Du, Zhijia ;
Hatchard, T. D. ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1858-A1863
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   The influence of the rotation frequency of a planetary ball mill on the limiting value of the specific surface area of the WC and Co nanopowders [J].
Dvornik, Maksim ;
Mikhailenko, Elena .
ADVANCED POWDER TECHNOLOGY, 2020, 31 (09) :3937-3946