Multi-products oriented co-pyrolysis of papers, plastics, and textiles in MSW and the synergistic effects

被引:18
作者
Batuer, Adili [1 ,2 ]
Long, Jisheng [2 ]
Du, Hailiang [2 ]
Chen, Dezhen [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Thermal & Environm Engn Inst, 1239 Siping Rd, Shanghai 200092, Peoples R China
[2] Shanghai SUS Environm Co LTD, Waste Incinerat Tech & Equipment Natl Engn Lab, Shanghai 201703, Peoples R China
基金
中国国家自然科学基金;
关键词
TG-FTIR; Paper; plastic; textile; Pyrolysis; Volatile; Synergistic effect; HIGH-DENSITY POLYETHYLENE; SOLID-WASTE COMPONENTS; TG-FTIR; LIGNOCELLULOSIC BIOMASS; THERMAL-BEHAVIOR; VOLATILE PRODUCTS; MODEL-COMPOUND; TO-ENERGY; CELLULOSE; LIGNIN;
D O I
10.1016/j.jaap.2022.105478
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Plastics, papers, and textiles are the main dry waste components of municipal solid waste (MSW). Product oriented pyrolysis of these wastes under proper blend ratio could be important not only for improving the quality of char, oil, or gas from MSW pyrolysis, but also for enhancing the recycle of plastics from MSW. In this study, the pyrolysis characteristics of papers (ivory board, coated duplex board with grey back, kraft paper and offset printing paper), plastics (polypropylene and polyethylene), and textiles (cotton and polyester) were studied using thermogravimetric-Fourier transform infrared (TG-FTIR) analysis, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) to obtain the optimum blend ratios for the desired products (gas, oil, volatile and char). The synergistic effects amongst different components during pyrolysis were investigated. Results showed that the co-pyrolysis of papers, plastics, and textiles under equal blend ratio promoted the production of aromatics, alkenes, water, alcohol, and phenol in volatile, but inhibited the production of CO2, CO, alkanes, and carbonyls. The optimum mass blend ratios were found to be paper: plastic: textile = 25 wt%: 50 wt%: 25 wt% and 12 wt%: 50 wt%: 38 wt%, respectively for obtaining the highest energy share in volatile and gas. While for producing char with higher surface area, higher paper ratio and lower plastics ratio is preferred. When the plastics percentage in mixture was increased from 12.5 wt% to 25 wt%, the oxygenates percentage in pyrolysis oil was reduced from 82 area% to 19 area%, further increase in plastics percentage, or, alterations of papers and textiles percentages did not show significant influence on oil composition, indicating that plastics can be recycled, without lowering the calorific values of pyrolysis oil or MSW for incineration, when their blend ratio in MSW exceeds 25 wt%.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics
    Alam, Mahboob
    Bhavanam, Anjireddy
    Jana, Ashirbad
    Viroja, Jaimin Kumar S.
    Peela, Nageswara Rao
    RENEWABLE ENERGY, 2020, 149 (149) : 1133 - 1145
  • [22] Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating
    Dai, Chongyang
    Hu, Erfeng
    Yang, Yang
    Li, Moshan
    Li, Chenhao
    Zeng, Yongfu
    WASTE MANAGEMENT, 2023, 169 : 147 - 156
  • [23] Thermal behavior, synergistic effect and thermodynamic parameter evaluations of biomass/plastics co-pyrolysis in a concentrating photothermal TGA
    Shagali, Abdulmajid Abdullahi
    Hu, Song
    Li, Hanjian
    Chi, Huanying
    Qing, Haoran
    Xu, Jun
    Jiang, Long
    Wang, Yi
    Su, Sheng
    Xiang, Jun
    FUEL, 2023, 331
  • [24] Co-pyrolysis of sewage sludge and lignocellulosic biomass: Synergistic effects on products characteristics and kinetics
    Liu, Yang
    Song, Yongmeng
    Fu, Jie
    Ao, Wenya
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Yu, Mengyan
    Zhang, Yingwen
    Dai, Jianjun
    Bi, Xiaotao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 268
  • [25] Mechanism of synergistic effects and kinetics analysis in catalytic co-pyrolysis of water hyacinth and HDPE
    Zhong, Siying
    Zhang, Bo
    Liu, Chenhao
    Aldeen, Awsan Shujaa
    ENERGY CONVERSION AND MANAGEMENT, 2021, 228
  • [26] Elucidating synergistic effects during co-pyrolysis of plastics and paper in municipal solid waste: Thermal behavior and product characteristics
    Hu, Zichao
    Tang, Longfei
    Gao, Peipei
    Wang, Bin
    Zhang, Chang
    Sheng, Yue
    Pan, Weitong
    Ding, Lu
    Chen, Xueli
    Wang, Fuchen
    BIORESOURCE TECHNOLOGY, 2025, 416
  • [27] Investigation on the reaction kinetics, thermodynamics and synergistic effects in co-pyrolysis of polyester and viscose fibers
    Peng, Hongmei
    Li, Pingli
    Yang, Qi
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2022, 135 (02) : 769 - 793
  • [28] Towards enhanced understanding of synergistic effects in co-pyrolysis of pinewood and polycarbonate
    Liu, Xuan
    Burra, Kiran Raj G.
    Wang, Zhiwei
    Li, Jinhu
    Che, Defu
    Gupta, Ashwani K.
    APPLIED ENERGY, 2021, 289
  • [29] Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism
    Esso, Samy Berthold Engamba
    Zhe Xiong
    Chaiwat, Weerawut
    Kamara, Melvina Fudia
    Xu Longfei
    Jun Xu
    Ebako, Joseph
    Long Jiang
    Sheng Su
    Song Hu
    Yi Wang
    Jun Xiang
    BIOMASS & BIOENERGY, 2022, 159
  • [30] Co-pyrolysis of macroalgae and lignocellulosic biomass: Synergistic effect, optimization studies, modeling, and simulation of effects of co-pyrolysis parameters on yields
    Uzoejinwa, Benjamin Bernard
    He, Xiuhua
    Wang, Shuang
    Abomohra, Abd El-Fatah
    Hu, Yamin
    He, Zhixia
    Wang, Qian
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (05) : 2001 - 2016