Passively mode-locked interband cascade optical frequency combs

被引:84
作者
Bagheri, Mahmood [1 ]
Frez, Clifford [1 ]
Sterczewski, Lukasz A. [1 ]
Gruidin, Ivan [1 ]
Fradet, Mathieu [1 ]
Vurgaftman, Igor [2 ]
Canedy, Chadwick L. [2 ]
Bewley, William W. [2 ]
Merritt, Charles D. [2 ]
Kim, Chul Soo [2 ]
Kim, Mijin [3 ]
Meyer, Jerry R. [2 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] Naval Res Lab, Washington, DC 20375 USA
[3] Sotera Def Solut Inc, Columbia, MD 21046 USA
关键词
ENVELOPE PHASE-CONTROL; LASERS; GENERATION;
D O I
10.1038/s41598-018-21504-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since their inception, optical frequency combs have transformed a broad range of technical and scientific disciplines, spanning time keeping to navigation. Recently, dual comb spectroscopy has emerged as an attractive alternative to traditional Fourier transform spectroscopy, since it offers higher measurement sensitivity in a fraction of the time. Midwave infrared (mid-IR) frequency combs are especially promising as an effective means for probing the strong fundamental absorption lines of numerous chemical and biological agents. Mid-IR combs have been realized via frequency down-conversion of a near-IR comb, by optical pumping of a micro-resonator, and beyond 7 mu m by four-wave mixing in a quantum cascade laser. In this work, we demonstrate an electrically-driven frequency comb source that spans more than 1 THz of bandwidth centered near 3.6 mu m. This is achieved by passively mode-locking an interband cascade laser (ICL) with gain and saturable absorber sections monolithically integrated on the same chip. The new source will significantly enhance the capabilities of mid-IR multi-heterodyne frequency comb spectroscopy systems.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Monolithic and multi-GigaHertz mode-locked semiconductor lasers: Constructions, experiments, models and applications [J].
Avrutin, EA ;
Marsh, JH ;
Portnoi, EL .
IEE PROCEEDINGS-OPTOELECTRONICS, 2000, 147 (04) :251-278
[2]   Room temperature quantum cascade lasers with 27% wall plug efficiency [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[3]  
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
[4]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[5]   Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers [J].
Botez, D. ;
Kumar, S. ;
Shin, J. C. ;
Mawst, L. J. ;
Vurgaftman, I. ;
Meyer, J. R. .
APPLIED PHYSICS LETTERS, 2010, 97 (07)
[6]   Computational multiheterodyne spectroscopy [J].
Burghoff, David ;
Yang, Yang ;
Hu, Qing .
SCIENCE ADVANCES, 2016, 2 (11)
[7]   Pulsed and CW performance of 7-stage interband cascade lasers [J].
Canedy, Chadwick L. ;
Abell, Joshua ;
Merritt, Charles D. ;
Bewley, William W. ;
Kim, Chul Soo ;
Kim, Mijin ;
Vurgaftman, Igor ;
Meyer, Jerry R. .
OPTICS EXPRESS, 2014, 22 (07) :7702-7710
[8]   Coherent multiheterodyne spectroscopy using stabilized optical frequency combs [J].
Coddington, Ian ;
Swann, William C. ;
Newbury, Nathan R. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[9]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[10]   Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy [J].
Cruz, Flavio C. ;
Maser, Daniel L. ;
Johnson, Todd ;
Ycas, Gabriel ;
Klose, Andrew ;
Giorgetta, Fabrizio R. ;
Coddington, Ian ;
Diddams, Scott A. .
OPTICS EXPRESS, 2015, 23 (20) :26814-26824