On asymptotic packing of geometric graphs

被引:1
|
作者
Cranston, Daniel W. [1 ]
Nie, Jiaxi [2 ]
Verstraete, Jacques [2 ]
Wesolek, Alexandra [3 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA USA
[2] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
美国国家科学基金会;
关键词
Graph packing; Geometric graph; Convex geometric graph;
D O I
10.1016/j.dam.2022.07.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set of geometric graphs is geometric-packable if it can be asymptotically packed into every sequence of drawings of the complete graph Kn. For example, the set of geometric triangles is geometric-packable due to the existence of Steiner Triple Systems. When G is the 4-cycle (or 4-cycle with a chord), we show that the set of plane drawings of G is geometric-packable. In contrast, the analogous statement is false when G is nearly any other planar Hamiltonian graph (with at most 3 possible exceptions). A convex geometric graph is convex-packable if it can be asymptotically packed into the convex drawings of the complete graphs. For each planar Hamiltonian graph G, we determine whether or not a plane G is convex-packable. Many of our proofs explicitly construct these packings; in these cases, the packings exhibit a symmetry that mirrors the vertex transitivity of Kn. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 152
页数:11
相关论文
共 50 条
  • [1] On asymptotic packing of convex geometric and ordered graphs
    Nie, Jiaxi
    Surya, Erlang
    Zeng, Ji
    JOURNAL OF GRAPH THEORY, 2023, 104 (04) : 836 - 850
  • [2] BLOCH FUNCTIONS, ASYMPTOTIC VARIANCE, AND GEOMETRIC ZERO PACKING
    Hedenmalm, Haakan
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (01) : 267 - 321
  • [3] Packing plane spanning graphs with short edges in complete geometric graphs
    Aichholzer, Oswin
    Hackl, Thomas
    Korman, Matias
    Pilz, Alexander
    van Renssen, Andre
    Roeloffzen, Marcel
    Rote, Gunter
    Vogtenhuber, Birgit
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 82 (1-15): : 1 - 15
  • [4] Packing plane spanning trees and paths in complete geometric graphs
    Aichholzer, Oswin
    Hackl, Thomas
    Korman, Matias
    van Kreveld, Marc
    Loffler, Maarten
    Pilz, Alexander
    Speckmann, Bettina
    Welzl, Emo
    INFORMATION PROCESSING LETTERS, 2017, 124 : 35 - 41
  • [5] WEIGHTED VERTEX PACKING PROBLEM FOR SPECIALLY STRUCTURED GEOMETRIC GRAPHS
    YU, G
    KOUVELIS, P
    LUO, SJ
    NAVAL RESEARCH LOGISTICS, 1995, 42 (01) : 81 - 102
  • [6] Packing 1-Plane Hamiltonian Cycles in Complete Geometric Graphs
    Trao, Hazim Michman
    Ali, Niran Abbas
    Chia, Gek L.
    Kilicman, Adem
    FILOMAT, 2019, 33 (06) : 1561 - 1574
  • [7] Distributed algorithm for the maximal 2-packing in geometric outerplanar graphs
    Antonio Trejo-Sanchez, Joel
    Alberto Fernandez-Zepeda, Jose
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (03) : 2193 - 2202
  • [9] THE ASYMPTOTIC SIZE OF THE LARGEST COMPONENT IN RANDOM GEOMETRIC GRAPHS WITH SOME APPLICATIONS
    Chen, Ge
    Yao, Changlong
    Guo, Tiande
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (02) : 307 - 324
  • [10] Covariance matrices of length power functionals of random geometric graphs - an asymptotic analysis
    Reitzner, Matthias
    Roemer, Tim
    von Westenholz, Mandala
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 691 : 151 - 181