Harmonic Maps and Biharmonic Maps

被引:3
作者
Urakawa, Hajime [1 ]
机构
[1] Tohoku Univ, Inst Int Educ, Sendai, Miyagi 9808576, Japan
来源
SYMMETRY-BASEL | 2015年 / 7卷 / 02期
基金
日本学术振兴会;
关键词
LAGRANGIAN SUBMANIFOLDS; LEGENDRIAN SUBMANIFOLDS; LIE-GROUPS; HYPERSURFACES; MANIFOLDS;
D O I
10.3390/sym7020651
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
引用
收藏
页码:651 / 674
页数:24
相关论文
共 61 条
  • [21] Gudmundsson S., BIBLIO HARMONIC MORP
  • [22] HYPERSURFACES IN E(4) WITH HARMONIC CURVATURE VECTOR FIELD
    HASANIS, T
    VLACHOS, T
    [J]. MATHEMATISCHE NACHRICHTEN, 1995, 172 : 145 - 169
  • [23] Classifications and Isolation Phenomena of Bi-Harmonic Maps and Bi-Yang-Mills Fieds
    Ichiyama, Toshiyuki
    Inoguchi, Jun-ichi
    Urakawa, Hajime
    [J]. NOTE DI MATEMATICA, 2010, 30 (02): : 15 - 48
  • [24] Bi-harmonic maps and bi-Yang-Mills fields
    Ichiyama, Toshiyuki
    Inoguchi, Jun-ichi
    Urakawa, Hajime
    [J]. NOTE DI MATEMATICA, 2008, 28 : 233 - 275
  • [25] Inoguchi J., 2004, COLLOQ MATH-WARSAW, V100, P163
  • [26] Iriyeh H., 2005, TOKYO J MATH, V28, P91
  • [27] Ishihara S., 1975, Hokkaido Math. J., V4, P234
  • [28] Jiang G.Y., 1986, CHINESE ANN MATH A, V7, p[388, 209]
  • [29] Hamiltonian minimality of normal bundles over the isoparametric submanifolds
    Kajigaya, Toru
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 37 : 89 - 108
  • [30] Kobayashi S., 1969, FDN DIFFERENTIAL GEO