Harmonic Maps and Biharmonic Maps

被引:3
作者
Urakawa, Hajime [1 ]
机构
[1] Tohoku Univ, Inst Int Educ, Sendai, Miyagi 9808576, Japan
来源
SYMMETRY-BASEL | 2015年 / 7卷 / 02期
基金
日本学术振兴会;
关键词
LAGRANGIAN SUBMANIFOLDS; LEGENDRIAN SUBMANIFOLDS; LIE-GROUPS; HYPERSURFACES; MANIFOLDS;
D O I
10.3390/sym7020651
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
引用
收藏
页码:651 / 674
页数:24
相关论文
共 61 条
  • [1] Biharmonic properly immersed submanifolds in Euclidean spaces
    Akutagawa, Kazuo
    Maeta, Shun
    [J]. GEOMETRIAE DEDICATA, 2013, 164 (01) : 351 - 355
  • [2] [Anonymous], ARXIV13066123
  • [3] Aribi A., 2012, THESIS U TOURS FRANC
  • [4] Baird P., 1981, LECT NOTES MATH, V894, P1
  • [5] Baird P., 2003, Harmonic morphisms between Riemannain manifolds
  • [6] Liouville-type theorems for biharmonic maps between Riemannian manifolds
    Baird, Paul
    Fardoun, Ali
    Ouakkas, Seddik
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) : 49 - 68
  • [7] Classification results for biharmonic submanifolds in spheres
    Balmus, A.
    Montaldo, S.
    Oniciuc, C.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) : 201 - 220
  • [8] Biharmonic hypersurfaces in 4-dimensional space forms
    Balmus, Adina
    Montaldo, Stefano
    Oniciuc, Cezar
    [J]. MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) : 1696 - 1705
  • [9] Barletta E, 2001, INDIANA U MATH J, V50, P719
  • [10] Caddeo R., 2001, Contemp. Math., V288, P286