A SECOND ORDER WELL-BALANCED FINITE VOLUME SCHEME FOR EULER EQUATIONS WITH GRAVITY

被引:83
作者
Chandrashekar, Praveen [1 ]
Klingenberg, Christian [2 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore, Karnataka, India
[2] Univ Wurzburg, Dept Math, D-97070 Wurzburg, Germany
关键词
finite volume; Euler equations; gravity; well-balanced;
D O I
10.1137/140984373
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel well-balanced second order Godunov-type finite volume scheme for compressible Euler equations with gravity. The well-balanced property is achieved by a specific combination of source term discretization, hydrostatic reconstruction, and numerical flux that exactly resolves stationary contacts. The scheme is able to preserve isothermal and polytropic stationary solutions up to machine precision. It is applied on several examples using the numerical flux of Roe to demonstrate its well-balanced property and the improved resolution of small perturbations around the stationary solution.
引用
收藏
页码:B382 / B402
页数:21
相关论文
共 15 条
[1]  
Berthon C., WELL BALANCE 2 UNPUB
[2]   A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential [J].
Desveaux, Vivien ;
Zenk, Markus ;
Berthon, Christophe ;
Klingenberg, Christian .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 :217-226
[3]   High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres [J].
Fuchs, F. G. ;
McMurry, A. D. ;
Mishra, S. ;
Risebro, N. H. ;
Waagan, K. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) :4033-4058
[4]   On the behaviour of upwind schemes in the low Mach number limit [J].
Guillard, H ;
Viozat, C .
COMPUTERS & FLUIDS, 1999, 28 (01) :63-86
[5]   Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks [J].
Ismail, Farzad ;
Roe, Philip L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (15) :5410-5436
[6]   Well-balanced schemes for the Euler equations with gravitation [J].
Kaeppeli, R. ;
Mishra, S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 :199-219
[7]  
Landau L. D., 1986, THEORETICAL PHYS, V6
[8]  
LEVEQUE R. J., 1999, Internat. Ser. Numer. Math., V130, P609
[9]   A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms [J].
LeVeque, Randall J. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 48 (1-3) :209-226
[10]   A WELL-BALANCED SYMPLECTICITY-PRESERVING GAS-KINETIC SCHEME FOR HYDRODYNAMIC EQUATIONS UNDER GRAVITATIONAL FIELD [J].
Luo, Jun ;
Xu, Kun ;
Liu, Na .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2356-2381