Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type

被引:3
作者
Caso, Loredana [1 ]
D'Ambrosio, Roberta [1 ]
Transirico, Maria [1 ]
机构
[1] Univ Salerno, Dept Math, Via Giovanni Paolo 2, I-84084 Fisciano, SA, Italy
关键词
Elliptic equations; Cordes condition; A priori bounds; Uniqueness and existence results; Weighted spaces; UNBOUNDED-DOMAINS;
D O I
10.1007/s13348-015-0161-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove some weighted W-2,W-2-a priori bounds for a class of linear, elliptic, second-order, differential operators of Cordes type in certain weighted Sobolev spaces on unbounded open sets Omega of R-n, n >= 2. More precisely, we assume that the leading coefficients of our differential operator satisfy the so-called Cordes type condition, which corresponds to uniform ellipticity if n = 2 and implies it if n >= 3, while the lower order terms are in specific Morrey type spaces. Here, our analytic technique mainly makes use of the existence of a topological isomorphism from our weighted Sobolev space, denoted by W-s(2,2) (Omega) (s is an element of R), whose weight is a suitable function of class C-2((Omega) over bar), to the classical Sobolev space W-2,W-2(Omega), which allow us to exploit some well-known unweighted a priori estimates. Using the above mentioned W-s(2,2)-a priori bounds, we also deduce some existence and uniqueness results for the related Dirichlet problems in the weighted framework.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 39 条
[21]   Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type [J].
Scarpa, Luca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (04) :2113-2156
[22]   Energy critical Schrodinger equation with weighted exponential nonlinearity: Local and global well-posedness [J].
Bensouilah, Abdelwahab ;
Draoui, Dhouha ;
Majdoub, Mohamed .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (04) :599-621
[23]   A SHARP ADAMS-TYPE INEQUALITY FOR WEIGHTED SOBOLEV SPACES [J].
do O, Joao Marcos ;
Macedo, Abiel Costa ;
de Oliveira, Jose Francisco .
QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (02) :517-538
[24]   CRITERION FOR THE SOBOLEV WELL-POSEDNESS OF THE DIRICHLET PROBLEM FOR THE POISSON EQUATION IN LIPSCHITZ DOMAINS. I. [J].
Parfenov, A., I .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :2142-2189
[25]   Regularity estimates in weighted Morrey spaces for quasilinear elliptic equations [J].
Di Fazio, Giuseppe ;
Truyen Nguyen .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (06) :1627-1658
[26]   Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces [J].
Andras, Szilard ;
Meszaros, Alpar Richard .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 :131-138
[27]   The stationary Oseen equations in R3.: An approach in weighted Sobolev spaces [J].
Amrouche, Cherif ;
Razafison, Ulrich .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (02) :211-225
[28]   A Note on Bitsadze-Samarskii Type Nonlocal Boundary Value Problems: Well-Posedness [J].
Ashyralyev, Allaberen ;
Tetikoglu, Fatma Songul Ozesenli .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (09) :939-975
[29]   GLOBAL WELL-POSEDNESS IN UNIFORMLY LOCAL SPACES FOR THE CAHN-HILLIARD EQUATION IN R3 [J].
Zelik, Sergey ;
Pennant, Jon .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) :461-480
[30]   Weighted sobolev spaces for a scalar model of the stationary oseen equations in R3 [J].
Amrouche, Cherfi ;
Razafison, Ulrich .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (02) :181-210