Measurement of drag and its cancellation

被引:27
作者
DeBra, D. B. [1 ]
Conklin, J. W. [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
关键词
EQUIVALENCE PRINCIPLE; STEP;
D O I
10.1088/0264-9381/28/9/094015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e. g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2004, BIG BANG OBSERVER DI
[2]  
[Anonymous], 1959, WSEG Research Memorandum No. 11
[3]   LISA Pathfinder: the experiment and the route to LISA [J].
Armano, M. ;
Benedetti, M. ;
Bogenstahl, J. ;
Bortoluzzi, D. ;
Bosetti, P. ;
Brandt, N. ;
Cavalleri, A. ;
Ciani, G. ;
Cristofolini, I. ;
Cruise, A. M. ;
Danzmann, K. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Fauste, J. ;
Ferraioli, L. ;
Fertin, D. ;
Fichter, W. ;
Freschi, M. ;
Garcia, A. ;
Garcia, C. ;
Grynagier, A. ;
Guzman, F. ;
Fitzsimons, E. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hough, J. ;
Hueller, M. ;
Hoyland, D. ;
Jennrich, O. ;
Johlander, B. ;
Killow, C. ;
Lobo, A. ;
Mance, D. ;
Mateos, I. ;
McNamara, P. W. ;
Monsky, A. ;
Nicolini, D. ;
Nicolodi, D. ;
Nofrarias, M. ;
Perreur-Lloyd, M. ;
Plagnol, E. ;
Racca, G. D. ;
Ramos-Castro, J. ;
Robertson, D. ;
Sanjuan, J. ;
Schulte, M. O. ;
Shaul, D. N. A. ;
Smit, M. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (09)
[4]  
BENCZE W J, 2006, P 29 AAS GUID CONTR
[5]  
BENDER P, 1998, MPQ233, P190
[6]  
BOUDON Y, 1978, 29 C IAF
[7]  
BROGLIO L, 1967, P 7 INT SPAC SCI S, P1135
[8]  
CANNON RH, 1966, PROPOSAL DEV OPERATE
[9]  
CHAMPION KSW, 1968, T GEOPHYS UNION, V49, P637
[10]   Determination of Spherical Test Mass Kinematics with Modular Gravitational Reference Sensor [J].
Conklin, John W. ;
Allen, Graham ;
Sun, Ke-Xun ;
DeBra, Daniel B. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (06) :1700-1707