Quantum Monte Carlo study of topological phases on a spin analogue of Benalcazar-Bernevig-Hughes model

被引:8
作者
Guo, Jiaojiao [1 ]
Sun, Junsong [1 ]
Zhu, Xingchuan [2 ]
Li, Chang-An [3 ]
Guo, Huaiming [1 ]
Feng, Shiping [4 ]
机构
[1] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
[2] Nanjing Univ Sci & Technol, Ctr Basic Teaching & Expt, Jiangyin 214443, Peoples R China
[3] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
关键词
quantum Monte Carlo; Heisenberg model; higher-order topology; Benalcazar-Bernevig-Hughes model;
D O I
10.1088/1361-648X/ac30b4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the higher-order topological spin phases based on a spin analogue of Benalcazar-Bernevig-Hughes model in two dimensions using large-scale quantum Monte Carlo simulations. A continuous Neel-valence bond solid quantum phase transition is revealed by tuning the ratio between dimerized spin couplings, namely, the weak and strong exchange couplings. Through the finite-size scaling analysis, we identify the phase critical points, and consequently, map out the full phase diagrams in related parameter spaces. Particularly, we find that the valence bond solid phase can be a higher-order topological spin phase, which has a gap for spin excitations in the bulk while demonstrates characteristic gapless spin modes at corners of open lattices. We further discuss the connection between the higher-order topological spin phases and the electronic correlated higher-order phases, and find both of them possess gapless spin corner modes that are protected by higher-order topology. Our result exemplifies higher-order physics in the correlated spin systems and will contribute to further understandings of the many-body higher-order topological phenomena.
引用
收藏
页数:13
相关论文
共 85 条
[1]   Higher-order topological insulators in amorphous solids [J].
Agarwala, Adhip ;
Juricic, Vladimir ;
Roy, Bitan .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[2]   Generalized directed loop method for quantum Monte Carlo simulations [J].
Alet, F ;
Wessel, S ;
Troyer, M .
PHYSICAL REVIEW E, 2005, 71 (03)
[3]   ZQ Berry phase for higher-order symmetry-protected topological phases [J].
Araki, Hiromu ;
Mizoguchi, Tomonari ;
Hatsugai, Yasuhiro .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[4]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[5]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[6]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[7]   Fractional corner charges in a two-dimensional superlattice Bose-Hubbard model [J].
Bibo, Julian ;
Lovas, Izabella ;
You, Yizhi ;
Grusdt, Fabian ;
Pollmann, Frank .
PHYSICAL REVIEW B, 2020, 102 (04)
[8]   CRITICAL PROPERTIES FROM MONTE-CARLO COARSE GRAINING AND RENORMALIZATION [J].
BINDER, K .
PHYSICAL REVIEW LETTERS, 1981, 47 (09) :693-696
[9]   FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K ;
LANDAU, DP .
PHYSICAL REVIEW B, 1984, 30 (03) :1477-1485
[10]   Observation of Topological Magnon Insulator States in a Superconducting Circuit [J].
Cai, W. ;
Han, J. ;
Mei, Feng ;
Xu, Y. ;
Ma, Y. ;
Li, X. ;
Wang, H. ;
Song, Y. P. ;
Xue, Zheng-Yuan ;
Yin, Zhang-qi ;
Jia, Suotang ;
Sun, Luyan .
PHYSICAL REVIEW LETTERS, 2019, 123 (08)