A note on Bayesian nonparametric regression function estimation

被引:2
作者
Scricciolo, Catia [1 ]
机构
[1] Univ Commerciale L Bocconi, Ist Metodi Quantitativi, I-20135 Milan, Italy
关键词
nonparametric regression; posterior distribution; rate of convergence; sieve prior;
D O I
10.1007/s10260-007-0064-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note the problem of nonparametric regression function estimation in a random design regression model with Gaussian errors is considered from the Bayesian perspective. It is assumed that the regression function belongs to a class of functions with a known degree of smoothness. A prior distribution on the given class can be induced by a prior on the coefficients in a series expansion of the regression function through an orthonormal system. The rate of convergence of the resulting posterior distribution is employed to provide a measure of the accuracy of the Bayesian estimation procedure defined by the posterior expected regression function. We show that the Bayes' estimator achieves the optimal minimax rate of convergence under mean integrated squared error over the involved class of regression functions, thus being comparable to other popular frequentist regression estimators.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 18 条
[1]   Posterior consistency for semi-parametric regression problems [J].
Amewou-Atisso, M ;
Ghosal, S ;
Ghosh, JK ;
Ramamoorthi, RV .
BERNOULLI, 2003, 9 (02) :291-312
[2]  
[Anonymous], 2007, STAT METHODOL, DOI DOI 10.1016/J.STAMET.2006.07.003
[3]  
Barron A, 1999, ANN STAT, V27, P536
[4]  
CHOUDHURI N, 2005, HDB STAT BAYESIAN TH, V25
[5]  
CIFARELLI DM, 1981, MODELLO LINEARE NELL, V15
[6]  
DIACONIS P, 1986, ANN STAT, V14, P1, DOI 10.1214/aos/1176349830
[7]   ON INCONSISTENT BAYES ESTIMATES OF LOCATION [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF STATISTICS, 1986, 14 (01) :68-87
[8]   Convergence rates of posterior distributions [J].
Ghosal, S ;
Ghosh, JK ;
Van der Vaart, AW .
ANNALS OF STATISTICS, 2000, 28 (02) :500-531
[9]   Posterior consistency of Gaussian process prior for nonparametric binary regression [J].
Ghosal, Subhashis ;
Roy, Anindya .
ANNALS OF STATISTICS, 2006, 34 (05) :2413-2429
[10]  
Kleijn B., 2006, ANN STAT, V34