Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

被引:32
作者
Denk, R. [1 ]
Saal, J. [1 ]
Seiler, J. [2 ]
机构
[1] Univ Konstanz, Facbereich Math & Stat, D-78457 Constance, Germany
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
D O I
10.1134/S1061920808020040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a maximal regularity result for operators corresponding to rotation invariant symbols (in space) which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary-value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on the H-infinity-calculus and R-bounded operator families. As an application, we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.
引用
收藏
页码:171 / 191
页数:21
相关论文
共 29 条
[1]  
Adams R, 1978, Sobolev spaces
[2]  
[Anonymous], 1987, TEUBNER TEXTE MATH
[3]  
[Anonymous], 2002, AMS TRANSL 2
[4]  
Clément P, 2000, STUD MATH, V138, P135
[5]   Banach space operators with a bounded H infinity functional calculus [J].
Cowling, M ;
Doust, I ;
McIntosh, A ;
Yagi, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :51-89
[6]   The Newton polygon and elliptic problems with parameter [J].
Denk, R ;
Mennicken, R ;
Volevich, L .
MATHEMATISCHE NACHRICHTEN, 1998, 192 :125-157
[7]   Boundary value problems for a class of elliptic operator pencils [J].
Denk, R ;
Mennicken, R ;
Volevich, L .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (04) :410-436
[8]  
DENK R, FREE BOUNDARY UNPUB
[9]  
DENK R, 2003, MEM AM MATH SOC, V166
[10]  
DENK R, 2008, MAXIMAL L RHO REGULA