Operator-valued Fourier multipliers on periodic triebel spaces

被引:32
作者
Bu, SQ [1 ]
Kim, JM [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
operator-valued Fourier multiplier; vector-valued Triebel space; vector-valued maximal inequality; maximal regularity;
D O I
10.1007/s10114-004-0453-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.
引用
收藏
页码:1049 / 1056
页数:8
相关论文
共 14 条
[1]  
Amann H, 1997, MATH NACHR, V186, P5
[2]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[3]   Tools for maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 :317-336
[4]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[5]  
Edwards R.E., 1979, GRADUATE TEXTS MATH, V1
[6]   Operator-valued Fourier multiplier theorems on Besov spaces [J].
Girardi, M ;
Weis, L .
MATHEMATISCHE NACHRICHTEN, 2003, 251 :34-51
[7]  
Schmeisser H-J., 1987, Topics in Fourier Analysis and Function Spaces
[8]  
Triebel H., 2010, Theory of Function Spaces
[9]  
TRIEBEL H, 1997, FRACTALS AND SPECTRA, DOI DOI 10.1007/978-3-0348-0034-1
[10]   Operator-valued Fourier multiplier theorems and maximal Lp-regularity [J].
Weis, L .
MATHEMATISCHE ANNALEN, 2001, 319 (04) :735-758