Quantum versus classical integrability in Ruijs']jsenaars-Schneider systems
被引:13
|
作者:
Ragnisco, O
论文数: 0引用数: 0
h-index: 0
机构:Rome Tre Univ, Dept Phys, I-00146 Rome, Italy
Ragnisco, O
Sasaki, R
论文数: 0引用数: 0
h-index: 0
机构:Rome Tre Univ, Dept Phys, I-00146 Rome, Italy
Sasaki, R
机构:
[1] Rome Tre Univ, Dept Phys, I-00146 Rome, Italy
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
来源:
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
|
2004年
/
37卷
/
02期
关键词:
D O I:
10.1088/0305-4470/37/2/015
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The relationship (resemblance and/or contrast) between quantum and classical integrability in Ruijsenaars-Schneider systems, which are one-parameter deformations of Calogero-Moser systems, is addressed. Many remarkable properties of classical Calogero and Sutherland systems (based on any root system) at equilibrium are reported in a previous paper (Corrigan-Sasaki). For example, the minimum energies, frequencies of small oscillations and the eigenvalues of Lax pair matrices at equilibrium are all 'integer valued'. In this paper we report that similar features and results hold for the Ruijsenaars-Schneider type of integrable systems based on the classical root systems.