In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR

被引:71
|
作者
Fu, Riqiang [2 ]
Wang, Xingsheng [1 ]
Li, Conggang [3 ]
Santiago-Miranda, Adriana N. [4 ]
Pielak, Gary J. [5 ]
Tian, Fang [1 ]
机构
[1] Penn State Univ, Dept Biochem & Mol Biol, Hershey, PA 17033 USA
[2] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[4] Univ Puerto Rico, Dept Chem Engn, Mayaguez, PR 00681 USA
[5] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 美国国家卫生研究院;
关键词
AMYLOID PRECURSOR PROTEIN; RESONANCE ASSIGNMENT; ALZHEIMER-DISEASE; SECONDARY STRUCTURE; PURPLE MEMBRANES; LIPID-MEMBRANES; COAT PROTEIN; C-13; BACTERIORHODOPSIN; SPECTROSCOPY;
D O I
10.1021/ja204062v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The feasibility of using solid-state magic-angle-spinning NMR spectroscopy for in situ structural characterization of the LR11 (sorLA) transmembrane domain (TM) in native Escherichia coli membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on the LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using C-13 PARIS data. These assignments allowed comparisons of the secondary structure of the LR11 TM in native membrane environments and commonly used membrane mimics (e.g., micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis and offers the opportunity to investigate how membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding affect the protein structure.
引用
收藏
页码:12370 / 12373
页数:4
相关论文
共 50 条
  • [41] Magic angle spinning (MAS) NMR linewidths in the presence of solid-state dynamics
    Thrippleton, Michael J.
    Cutajar, Marica
    Wimperis, Stephen
    CHEMICAL PHYSICS LETTERS, 2008, 452 (4-6) : 233 - 238
  • [42] Structure and Dynamics of Membrane Proteins by Magic Angle Spinning Solid-State NMR
    McDermott, Ann
    ANNUAL REVIEW OF BIOPHYSICS, 2009, 38 : 385 - 403
  • [43] Improved magnetization transfer in solid-state NMR with fast magic angle spinning
    Weingarth, Markus
    Demco, Dan E.
    Bodenhausen, Geoffrey
    Tekely, Piotr
    CHEMICAL PHYSICS LETTERS, 2009, 469 (4-6) : 342 - 348
  • [44] Recent Advances in Magic-Angle Spinning Solid-State NMR of Proteins
    Ladizhansky, Vladimir
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (1-2) : 86 - 103
  • [45] Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR
    Rosay, Melanie
    Blank, Monica
    Engelke, Frank
    JOURNAL OF MAGNETIC RESONANCE, 2016, 264 : 88 - 98
  • [46] EXPERIMENTAL RESULTS ON DEUTERIUM NMR IN THE SOLID-STATE BY MAGIC ANGLE SAMPLE SPINNING
    ACKERMAN, JL
    ECKMAN, R
    PINES, A
    CHEMICAL PHYSICS, 1979, 42 (03) : 423 - 428
  • [47] Magic angle spinning solid-state NMR spectroscopy of impregnated heterogeneous catalysts
    Johnson, Robert
    Pfennig, Toni
    Hanrahan, Michael
    Ryan, Matthew
    Shanks, Brent
    Rossini, Aaron
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [49] Asynchronising five-fold symmetry sequence for better homonuclear polarisation transfer in magic-angle-spinning solid-state NMR
    Arunachalam, Vaishali
    Sharma, Kshama
    Mote, Kaustubh R.
    Madhu, P. K.
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2023, 124
  • [50] Determination of the Lithium Binding Site in Inositol Monophosphatase, the Putative Target for Lithium Therapy, by Magic-Angle-Spinning Solid-State NMR
    Haimovich, Anat
    Eliav, Uzi
    Goldbourt, Amir
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) : 5647 - 5651