Multibody Dynamics in Natural Coordinates through Automatic Differentiation and High-Index DAE Solving

被引:1
作者
Pryce, John D. [1 ]
Nedialkov, Nedialko S. [2 ]
机构
[1] Cardiff Univ, Cardiff, Wales
[2] McMaster Univ, Hamilton, ON, Canada
来源
ACTA CYBERNETICA | 2020年 / 24卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Lagrangian mechanics; differential-algebraic equations; natural coordinates; simulation; algorithmic differentiation; YAML;
D O I
10.14232/actacyb.24.3.2020.4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Natural Coordinates (NCs) method for Lagrangian modelling and simulation of multibody systems is valued for giving simple, sparse models. We describe our version of it and compare with the classical approach of Jalan and Bayo (JBNCs). Our NCs use the high-index differential-algebraic equation solver DAETS. Algorithmic differentiation, not symbolic algebra, forms the equations of motion from the Lagrangian. We obtain significantly smaller equation systems than JBNCs, at the cost of a non-constant mass matrix for fully 3D models a minor downside in the DAETS context. Examples in 2D and 3D are presented, with numerical results.
引用
收藏
页码:315 / 341
页数:27
相关论文
共 23 条
  • [1] Brenan K.E., 1996, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
  • [2] Algorithm 907: KLU, A Direct Sparse Solver for Circuit Simulation Problems
    Davis, Timothy A.
    Natarajan, Ekanathan Palamadai
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2010, 37 (03):
  • [3] Garcia de Jalon J., 1994, Kinematic and Dynamic Simulation of Multibody Systems, DOI DOI 10.1007/978-1-4612-2600-0
  • [4] Twenty-five years of natural coordinates
    Garcia de Jalon, Javier
    [J]. MULTIBODY SYSTEM DYNAMICS, 2007, 18 (01) : 15 - 33
  • [5] Greiner W., 2010, Springer, DOI [10.1007/978-3-642-03434-3, DOI 10.1007/978-3-642-03434-3]
  • [6] Jalon J.G., 2007, P INT DESIGN ENG TEC, P1539
  • [7] Modeling mechanical DAE using natural coordinates
    Kraus, C
    Winckler, M
    Bock, HG
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2001, 7 (02) : 145 - 158
  • [8] Li X, 2017, THESIS
  • [9] INDEX REDUCTION IN DIFFERENTIAL-ALGEBRAIC EQUATIONS USING DUMMY DERIVATIVES
    MATTSSON, SE
    SODERLIND, G
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (03) : 677 - 692
  • [10] Nedialkov N., 2008, European Society of Computational Methods in Sciences and Engineering (ESCMSE) Journal of Numerical Analysis, Industrial and Applied Mathematics, V3, P61