Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces

被引:6
作者
Akbulut, Ali [1 ]
Hamzayev, Vugar H [2 ,3 ]
Safarov, Zaman V [2 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Inst Math & Mech NASA, Baku, Azerbaijan
[3] Nakhchivan Teacher Training Inst, Nakhchivan, Azerbaijan
关键词
fractional multilinear integral; rough kernel; BMO; generalized Morrey space; NONDIVERGENCE ELLIPTIC-EQUATIONS; MAXIMAL OPERATOR; COMMUTATORS; REGULARITY;
D O I
10.1186/s13660-015-0751-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundedness of fractional multilinear integral operators with rough kernels T-A,T-m,(omega alpha) on the generalized Morrey spaces M-p,M-phi. We find the sufficient conditions on the pair (phi 1,phi 2), which ensures the boundedness of the operators T-A,T-m ,(omega alpha) from Mp,phi 1 to Mp,phi 2 for 1 < p < infinity. In all cases the conditions for the boundedness of the operator T-A,T-m (omega,alpha) is given in terms of Zygmund-type integral inequalities on (phi 1,phi 2), which do not make any assumption on the monotonicity of phi 1(x,r), phi 2(x,r) in r.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
Akbulut A, 2012, MATH BOHEM, V137, P27
[2]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249
[3]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[4]  
Chiarenza F., 1987, REND MAT, V7, P273
[5]  
Chiarenza F., 1991, Ric. Mat., V40, P149
[6]   A BMO ESTIMATE FOR MULTILINEAR SINGULAR-INTEGRALS [J].
COHEN, J ;
GOSSELIN, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (03) :445-464
[7]   INTERIOR ESTIMATES IN MORREY SPACES FOR STRONG SOLUTIONS TO NONDIVERGENCE FORM EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
DIFAZIO, G ;
RAGUSA, MA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :241-256
[8]   Higher order commutators for a class of rough operators [J].
Ding, Y ;
Lu, SZ .
ARKIV FOR MATEMATIK, 1999, 37 (01) :33-44
[9]  
Ding Y, 2001, Adv. Math., V30, P238
[10]  
Ding Y., 1998, Yokohama Math. J, V46, P15