Rational digit systems over finite fields and Christol's Theorem

被引:0
作者
Loquias, Manuel Joseph C. [1 ,2 ]
Mkaouar, Mohamed [3 ]
Scheicher, Klaus [4 ]
Thuswaldner, Joerg M. [1 ]
机构
[1] Univ Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Univ Philippines Diliman, Inst Math, Quezon City 1101, Philippines
[3] Fac Sci Sfax, BP 802, Sfax 3018, Tunisia
[4] Univ Nat Resources & Appl Life Sci, Inst Math, Gregor Mendel Str 33, A-1180 Vienna, Austria
基金
奥地利科学基金会;
关键词
Finite fields; Formal Laurent series; Digit system; Christol's Theorem; FORMAL LAURENT SERIES; BETA-EXPANSIONS; NUMBER-SYSTEMS; POLYNOMIALS; AUTOMATA; SETS; SEQUENCES; POWERS; RINGS;
D O I
10.1016/j.jnt.2016.07.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P, Q is an element of F-q[X] \ {0} be two coprime polynomials over the finite field Fq with deg P > deg Q. We represent each polynomial w over F-q by w = Sigma(k)(i=0)s(i/)Q (P/Q)(i) using a rational base P/Q and digits s(i) is an element of F-q[X] satisfying deg s(i) < deg P. Digit expansions of this type are also defined for formal Laurent series over F-q. We prove uniqueness and automatic properties of these expansions. Although the omega-language of the possible digit strings is not regular, we are able to characterize the digit expansions of algebraic elements. In particular, we give a version of Christol's Theorem by showing that the digit string of the digit expansion of a formal Laurent series is automatic if and only if the series is algebraic over F-q[X]. Finally, we study relations between digit expansions of formal Laurent series and a finite fields version of Mahler's 3/2-problem. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 390
页数:33
相关论文
共 27 条
[1]  
Abbes F, 2013, OSAKA J MATH, V50, P807
[2]   On the complexity of algebraic numbers I. Expansions in integer bases [J].
Adamczewski, Boris ;
Bugeaud, Yann .
ANNALS OF MATHEMATICS, 2007, 165 (02) :547-565
[3]   Powers of rationals modulo 1 and rational base number systems [J].
Akiyama, Shigeki ;
Frougny, Christiane ;
Sakarovitch, Jacques .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) :53-91
[4]  
Allouche J.P., 2003, Automatic sequences: Theory, applications, generalizations
[5]   Automaticity of double sequences generated by one-dimensional linear cellular automata [J].
Allouche, JP ;
vonHaeseler, F ;
Peitgen, HO ;
Petersen, A ;
Skordev, G .
THEORETICAL COMPUTER SCIENCE, 1997, 188 (1-2) :195-209
[6]   Automata, algebraicity and distribution of sequences of powers [J].
Allouche, JP ;
Deshouillers, JM ;
Kamae, T ;
Koyanagi, T .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (03) :687-+
[7]  
[Anonymous], 1990, HDB THEORETICAL COMP
[8]   Number systems and tilings over Laurent series [J].
Beck, Tobias ;
Brunotte, Horst ;
Scheicher, Klaus ;
Thuswaldner, Joerg M. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 :9-29
[9]  
Ben Amar H, 2014, MONATSH MATH, V175, P161, DOI 10.1007/s00605-013-0595-x
[10]  
Christol G., 1979, Theoretical Computer Science, V9, P141, DOI 10.1016/0304-3975(79)90011-2