Scalable Implementation of Recombination Catalyst Layers to Mitigate Gas Crossover in PEM Water Electrolyzers

被引:26
作者
Staehler, A. [1 ]
Staehler, M. [1 ]
Scheepers, F. [1 ]
Lehnert, W. [1 ,2 ]
Carmo, M. [1 ,3 ]
机构
[1] Forschungszentrum Julich, IEK Electrochem Proc Engn 14, Inst Energy & Climate Res, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Modeling Electrochem Proc Engn, D-52056 Aachen, Germany
[3] Queens Univ, Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
关键词
MEMBRANE; HYDROGEN; SUPPRESSION; REDUCTION; TRANSPORT;
D O I
10.1149/1945-7111/ac5c9b
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hydrogen permeation across the membrane is a critical safety hurdle within polymer electrolyte membrane (PEM) water electrolysis (WE). It is crucial to implement recombination catalysts into the membrane electrode assemblies (MEAs) for reducing hydrogen concentrations and allow the use of much thinner membrane architectures that allow high efficiency operation. Here we show how recombination catalyst layers can be fabricated into MEAs by using a scalable method. In subsequent slot-die coating steps, an electrically insulating and then a recombination layer (both 5 mu m thick) are applied directly to the anode. This three-layer system is then processed into a 5-layer MEA with a cathode and membrane using the decal process. The 5-layer MEA shows a reliable hydrogen reduction in the anode product gas for a wide-range of membrane thicknesses. The long-term stability of the recombination layer is shown for a 5-layer Nafion (TM) HP-MEA in comparison to a 3-layer MEA. Even after long-term operation, the MEA shows a safe hydrogen concentration reduction on the anode. Finally, the presented technique is used to produce 5-layer MEAs with active areas of 1056 cm(2) and 60 mu m membrane thicknesses. Measurements on reference MEAs show a successful scale-up, proving the technique to be applicable to all scales.
引用
收藏
页数:9
相关论文
共 27 条
  • [1] Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
    Babic, Ugljesa
    Suermann, Michel
    Buechi, Felix N.
    Gubler, Lorenz
    Schmidt, Thomas J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : F387 - F399
  • [2] Analysis of Gas Permeation Phenomena in a PEM Water Electrolyzer Operated at High Pressure and High Current Density
    Bernt, M.
    Schroeter, J.
    Moeckl, M.
    Gasteiger, H. A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)
  • [3] Enhanced performance of a PtCo recombination catalyst for reducing the H2 concentration in the O2 stream of a PEM electrolysis cell in the presence of a thin membrane and a high differential pressure
    Briguglio N.
    Pantò F.
    Siracusano S.
    Aricò A.S.
    [J]. Aricò, A.S. (arico@itae.cnr.it), 1600, Elsevier Ltd (344):
  • [4] Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach
    Briguglio, Nicola
    Siracusano, Stefania
    Bonura, Giuseppe
    Sebastian, David
    Arico, Antonino S.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 254 - 265
  • [5] Homogeneity analysis of square meter-sized electrodes for PEM electrolysis and PEM fuel cells
    Burdzik, Andrea
    Staehler, Markus
    Friedrich, Irene
    Carmo, Marcelo
    Stolten, Detlef
    [J]. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2018, 15 (06): : 1423 - 1432
  • [6] Comparison of Pt-Doped Membranes for Gas Crossover Suppression in Polymer Electrolyte Water Electrolysis
    Garbe, Steffen
    Samulesson, Erik
    Schmidt, Thomas J.
    Gubler, Lorenz
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (10)
  • [7] Communication-Pt-Doped Thin Membranes for Gas Crossover Suppression in Polymer Electrolyte Water Electrolysis
    Garbe, Steffen
    Babic, Ugljesa
    Nilsson, Elisabeth
    Schmidt, Thomas J.
    Gubler, Lorenz
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : F873 - F875
  • [8] High-pressure PEM water electrolysis and corresponding safety issues
    Grigoriev, S. A.
    Porembskiy, V. I.
    Korobtsev, S. V.
    Fateev, V. N.
    Aupretre, F.
    Millet, P.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) : 2721 - 2728
  • [9] Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis
    Grigoriev, S. A.
    Millet, P.
    Korobtsev, S. V.
    Porembskiy, V. I.
    Pepic, M.
    Etievant, C.
    Puyenchet, C.
    Fateev, V. N.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5986 - 5991
  • [10] Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis
    Ito, Hiroshi
    Miyazaki, Naoki
    Ishida, Masayoshi
    Nakano, Akihiro
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) : 20439 - 20446