Universal amplitude ratios in the Ising model in three dimensions

被引:4
作者
Gordillo-Guerrero, A. [1 ,2 ]
Kenna, R. [3 ]
Ruiz-Lorenzo, J. J. [2 ,4 ]
机构
[1] Univ Extremadura, Dept Ingn Elect Elect & Automat, E-10071 Caceres, Spain
[2] Inst Biocomp & Fis Sistemas Complejos BIFI, E-50009 Zaragoza, Spain
[3] Coventry Univ, Appl Math Res Ctr, Coventry CV1 5FB, W Midlands, England
[4] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2011年
关键词
classical Monte Carlo simulations; classical phase transitions (theory); critical exponents and amplitudes (theory); finite-size scaling; KALLEN-LEHMAN APPROACH; CRITICAL EXPONENTS; PARTITION-FUNCTION; CRITICAL-BEHAVIOR; COMPLEX ZEROS; CONJECTURES;
D O I
10.1088/1742-5468/2011/09/P09019
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use a high-precision Monte Carlo simulation to determine the universal specific-heat amplitude ratio A(+)/A(-) in the three-dimensional Ising model via the impact angle phi of complex temperature zeros. We also measure the correlation-length critical exponent nu from finite-size scaling and the specific-heat exponent a through hyperscaling. Extrapolations to the thermodynamic limit yield phi = 59.2(1.0)degrees, A(+)/A(-) = 0.56(3), nu = 0.630 48(32) and alpha = 0.1086(10). These results are compatible with some previous estimates from a variety of sources and rule out recently conjectured exact values.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Phase diagram of a three-dimensional dipolar Ising model with textured Ising axes
    Russier, V.
    Alonso, Juan J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (13)
  • [32] Precision calculation of universal amplitude ratios in O(N) universality classes: Derivative expansion results at order O( partial differential 4)
    De Polsi, Gonzalo
    Hernandez-Chifflet, Guzman
    Wschebor, Nicolas
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [33] New universality class in three dimensions? The antiferromagnetic RP(2) model
    Ballesteros, HG
    Fernandez, LA
    MartinMayor, V
    Sudupe, AM
    PHYSICS LETTERS B, 1996, 378 (1-4) : 207 - 212
  • [34] Restoration of dimensional reduction in the random-field Ising model at five dimensions
    Fytas, Nikolaos G.
    Martin-Mayor, Victor
    Picco, Marco
    Sourlas, Nicolas
    PHYSICAL REVIEW E, 2017, 95 (04)
  • [35] Boundary critical phenomena of the random transverse Ising model in D ≥ 2 dimensions
    Kovacs, Istvan A.
    Igloi, Ferenc
    PHYSICAL REVIEW B, 2013, 87 (02)
  • [36] Random Quantum Ising Model with Three-Spin Couplings
    Igloi, Ferenc
    Lin, Yu-Cheng
    ENTROPY, 2024, 26 (08)
  • [37] Scaling behavior of the Heisenberg model in three dimensions
    Gordillo-Guerrero, A.
    Kenna, R.
    Ruiz-Lorenzo, J. J.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [38] Ising percolation in a three-state majority vote model
    Balankin, Alexander S.
    Martinez-Cruz, M. A.
    Gayosso Martinez, Felipe
    Mena, Baltasar
    Tobon, Atalo
    Patino-Ortiz, Julian
    Patino-Ortiz, Miguel
    Samayoa, Didier
    PHYSICS LETTERS A, 2017, 381 (05) : 440 - 445
  • [39] Universality in disordered systems: The case of the three-dimensional random-bond Ising model
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    PHYSICAL REVIEW E, 2010, 82 (06):
  • [40] Emergence of the three-dimensional diluted Ising model universality class in a mixture of two magnets
    Ruiz-Lorenzo, J. J.
    Dudka, M.
    Krasnytska, M.
    Holovatch, Yu.
    PHYSICAL REVIEW E, 2025, 111 (02)