BILIPSCHITZ EMBEDDING OF SELF-SIMILAR SETS

被引:24
作者
Deng, Juan [2 ]
Wen, Zhi-Ying [2 ]
Xiong, Ying [3 ]
Xi, Li-Feng [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2011年 / 114卷
关键词
LIPSCHITZ EQUIVALENCE; HAUSDORFF DIMENSION; CONFORMAL SETS; CANTOR SETS; FRACTALS;
D O I
10.1007/s11854-011-0012-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that each self-similar set satisfying the strong separation condition can be bilipschitz embedded into each self-similar set with larger Hausdorff dimension. A bilipschitz embedding between two self-similar sets of the same Hausdorff dimension both satisfying the strong separation condition is only possible if the two sets are bilipschitz equivalent.
引用
收藏
页码:63 / 97
页数:35
相关论文
共 26 条
[1]  
[Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
[2]  
Bonk M., 2006, INT C MATH EUR MATH, VII, P1349
[3]  
COOPER D, 1988, J DIFFER GEOM, V28, P203
[4]  
David G., 1997, OXFORD LECT SERIES M, V7
[5]  
Falconer K., 1997, Techniques in Fractal Geometry
[6]   Classification of quasi-circles by Hausdorff dimension [J].
Falconer, K. J. ;
Marsh, D. T. .
NONLINEARITY, 1989, 2 (03) :489-493
[7]   DIMENSIONS AND MEASURES OF QUASI SELF-SIMILAR SETS [J].
FALCONER, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (02) :543-554
[8]   ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS [J].
FALCONER, KJ ;
MARSH, DT .
MATHEMATIKA, 1992, 39 (78) :223-233
[9]   A rigidity theorem for the solvable Baumslag-Solitar groups [J].
Farb, B ;
Mosher, L .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :419-451
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747