Investigation of methanol conversion over high-Si beta zeolites and the reaction mechanism of their high propene selectivity

被引:45
作者
Zhao, Xuebin [1 ,2 ,3 ]
Wang, Linying [1 ]
Li, Jinzhe [1 ]
Xu, Shutao [1 ]
Zhang, Wenna [1 ,2 ]
Wei, Yingxu [1 ]
Guo, Xinwen [3 ]
Tian, Peng [1 ]
Liu, Zhongmin [1 ]
机构
[1] Chinese Acad Sci, Natl Engn Lab Methanol Olefins, Dalian Natl Lab Clean Energy, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Dalian Univ Technol, State Key Lab Fine Chem, PSU DUT Joint Ctr Energy Res, Sch Chem Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALYZED METHYLATION REACTIONS; ANGLE-SPINNING NMR; HYDROCARBONS REACTION; CO-REACTION; METHYLCYCLOPENTENYL CATIONS; PROPYLENE PRODUCTION; PRODUCT SELECTIVITY; ZSM-5; ZEOLITES; CARBENIUM IONS; H-ZSM-5;
D O I
10.1039/c7cy01804e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large pore high-Si beta zeolites (Si/Al = 136 to 340) were synthesized by a HF-assisted method, and their catalytic performance for the conversion of methanol to propene was explored. It is demonstrated that beta zeolites with low acid density facilitate the achievement of high propene selectivity and a high propene/ethene ratio. The HF dosage in the synthesis has great influence on the Al distribution in the framework, as evidenced by Al-27 MAS NMR and Al-27 MQ MAS NMR spectroscopy, which may influence the acidity and microstructure of acid sites and lead to a remarkable catalytic lifespan. A HF/SiO2 ratio of 0.45 is found to facilitate the synthesis of high-Si beta enriched with Al atoms located at the T9 sites; this helps the catalyst show the longest lifetime, with a propene selectivity of 49.7-58.3% at 550 degrees C and WHSV = 2 h(-1). With the aid of C-12/C-13-methanol switch experiments, we elucidated that the olefin-based mechanism dominates the reaction and contributes to the formation of ethene, propene, and higher olefins. Moreover, two phenol compounds are identified in the coke species, which have not been observed previously and have been found to be detrimental to the reaction.
引用
收藏
页码:5882 / 5892
页数:11
相关论文
共 59 条
[1]  
[Anonymous], J CATAL, DOI DOI 10.1016/J.JCAT.2012.11.004
[2]   The methanol-to-hydrocarbons reaction:: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta [J].
Bjorgen, M ;
Olsbye, U ;
Petersen, D ;
Kolboe, S .
JOURNAL OF CATALYSIS, 2004, 221 (01) :1-10
[3]   Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species [J].
Bjorgen, Morten ;
Svelle, Stian ;
Joensen, Finn ;
Nerlov, Jesper ;
Kolboe, Stein ;
Bonino, Francesca ;
Palumbo, Luisa ;
Bordiga, Silvia ;
Olsbye, Unni .
JOURNAL OF CATALYSIS, 2007, 249 (02) :195-207
[4]   The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta [J].
Bjorgen, Morten ;
Joensen, Finn ;
Lillerud, Karl-Petter ;
Olsbye, Unni ;
Svelle, Stian .
CATALYSIS TODAY, 2009, 142 (1-2) :90-97
[5]   The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology [J].
Bleken, Francesca ;
Bjorgen, Morten ;
Palumbo, Luisa ;
Bordiga, Silvia ;
Svelle, Stian ;
Lillerud, Karl-Petter ;
Olsbye, Unni .
TOPICS IN CATALYSIS, 2009, 52 (03) :218-228
[6]   METHANOL CONVERSION TO OLEFINS OVER ZSM-5 .1. EFFECT OF TEMPERATURE AND ZEOLITE SIO2/AL2O3 [J].
CHANG, CD ;
CHU, CTW ;
SOCHA, RF .
JOURNAL OF CATALYSIS, 1984, 86 (02) :289-296
[7]   Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18 [J].
Chen, Jingrun ;
Li, Jinzhe ;
Yuan, Cuiyu ;
Xu, Shutao ;
Wei, Yingxu ;
Wang, Quanyi ;
Zhou, You ;
Wang, Jinbang ;
Zhang, Mozhi ;
He, Yanli ;
Xu, Shuliang ;
Liu, Zhongmin .
CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (09) :3268-3277
[8]   Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction [J].
Chen, Jingrun ;
Li, Jinzhe ;
Wei, Yingxu ;
Yuan, Cuiyu ;
Li, Bing ;
Xu, Shutao ;
Zhou, You ;
Wang, Jinbang ;
Zhang, Mozhi ;
Liu, Zhongmin .
CATALYSIS COMMUNICATIONS, 2014, 46 :36-40
[9]   Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process [J].
Chen, JQ ;
Bozzano, A ;
Glover, B ;
Fuglerud, T ;
Kvisle, S .
CATALYSIS TODAY, 2005, 106 (1-4) :103-107
[10]  
Chen JQ, 2004, STUD SURF SCI CATAL, V147, P1