Moving and reactive boundary conditions in moving-mesh hydrodynamics

被引:6
|
作者
Prust, Logan J. [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 3135 North Maryland Ave, Milwaukee, WI 53211 USA
基金
美国国家科学基金会;
关键词
hydrodynamics; methods: numerical; SIMULATIONS; ENERGY; STARS; WAVE;
D O I
10.1093/mnras/staa1031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We outline the methodology of implementing moving boundary conditions into the moving-mesh code MANGA. The motion of our boundaries is reactive to hydrodynamic and gravitational forces. We discuss the hydrodynamics of a moving boundary as well as the modifications to our hydrodynamic and gravity solvers. Appropriate initial conditions to accurately produce a boundary of arbitrary shape are also discussed. Our code is applied to several test cases, including a Sod shock tube, a Sedov-Taylor blast wave, and a supersonic wind on a sphere. We show the convergence of conserved quantities in our simulations. We demonstrate the use of moving boundaries in astrophysical settings by simulating a common envelope phase in a binary system, in which the companion object is modelled by a spherical boundary. We conclude that our methodology is suitable to simulate astrophysical systems using moving and reactive boundary conditions.
引用
收藏
页码:4616 / 4626
页数:11
相关论文
共 50 条
  • [11] A moving-mesh finite-volume scheme for compressible flows
    Matsuno, K
    Mihara, K
    Satofuka, N
    COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 705 - 710
  • [12] A MOVING-MESH GRADIENT SMOOTHING METHOD FOR COMPRESSIBLE CFD PROBLEMS
    Yao, Jianyao
    Liu, G. R.
    Qian, Dong
    Chen, Chung-Lung
    Xu, George X.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (02): : 273 - 305
  • [13] Quantifying Advantages of a Moving Mesh in Nuclear Hydrodynamics
    Hasenour, Dillon L.
    Duffell, Paul C.
    ASTROPHYSICAL JOURNAL, 2025, 981 (01):
  • [14] Moving mesh cosmology: the hydrodynamics of galaxy formation
    Sijacki, Debora
    Vogelsberger, Mark
    Keres, Dusan
    Springel, Volker
    Hernquist, Lars
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (04) : 2999 - 3027
  • [15] A hybrid level-set/moving-mesh interface tracking method
    Perline, K. R.
    Helenbrook, B. T.
    APPLIED NUMERICAL MATHEMATICS, 2015, 92 : 21 - 39
  • [16] Langmuir Circulation With Explicit Surface Waves From Moving-Mesh Modeling
    Wang, P.
    Ozgokmen, T. M.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (01) : 216 - 226
  • [17] HYDRODYNAMIC MOVING-MESH SIMULATIONS OF THE COMMON ENVELOPE PHASE IN BINARY STELLAR SYSTEMS
    Ohlmann, Sebastian T.
    Roepke, Friedrich K.
    Pakmor, Ruediger
    Springel, Volker
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 816 (01)
  • [18] Moving-mesh radiation-hydrodynamic simulations of wind-reprocessed transients
    Calderon, Diego
    Pejcha, Ondrej
    Duffell, Paul C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (01) : 1092 - 1105
  • [19] Evaluation of a two-dimensional moving-mesh method for rigid body motions
    Mirsajedi, S. M.
    Karimian, S. M. H.
    AERONAUTICAL JOURNAL, 2006, 110 (1109): : 429 - 438
  • [20] Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods
    Tayfun E. Tezduyar
    Sunil Sathe
    Jason Pausewang
    Matthew Schwaab
    Jason Christopher
    Jason Crabtree
    Computational Mechanics, 2008, 43 : 39 - 49