Codimension one foliations of degree three on projective spaces

被引:4
作者
da Costa, Raphael Constant [1 ]
Lizarbe, Ruben [1 ]
Pereira, Jorge Vitorio [2 ]
机构
[1] Univ Estado Rio de Janeiro, UERJ, Rua Sao Francisco Xavie 524, BR-20550900 Maracana, RJ, Brazil
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2022年 / 174卷
关键词
Foliations on projective spaces; Spaces of foliations; Degree three foliations; IRREDUCIBLE COMPONENTS; HOLOMORPHIC FOLIATIONS; STABILITY; SINGULARITIES;
D O I
10.1016/j.bulsci.2021.103092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a structure theorem for degree three codimension one foliations on projective spaces of dimension n >= 3, extending a result by Loray, Pereira, and Touzet for degree three foliations on P-3. We show that the space of codimension one foliations of degree three on P-n, n >= 3, has exactly 18 distinct irreducible components parameterizing foliations without rational first integrals, and at least 6 distinct irreducible components parameterizing foliations with rational first integrals. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:39
相关论文
共 25 条
  • [21] Hypersurfaces quasi-invariant by codimension one foliations
    Pereira, Jorge Vitorio
    Spicer, Calum
    [J]. MATHEMATISCHE ANNALEN, 2020, 378 (1-2) : 613 - 635
  • [22] Effective algebraic integration in bounded genus
    Pereira, Jorge Vitorio
    Svaldi, Roberto
    [J]. ALGEBRAIC GEOMETRY, 2019, 6 (04): : 454 - 485
  • [23] Transformation groups of holomorphic foliations
    Pereira, JV
    Sánchez, PF
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2002, 10 (05) : 1115 - 1123
  • [24] Saito K., 1980, J. Fac. Sci. Univ. Tokyo, V27, P265
  • [25] Soares MG, 2009, ASTERISQUE, P431