Codimension one foliations of degree three on projective spaces

被引:4
作者
da Costa, Raphael Constant [1 ]
Lizarbe, Ruben [1 ]
Pereira, Jorge Vitorio [2 ]
机构
[1] Univ Estado Rio de Janeiro, UERJ, Rua Sao Francisco Xavie 524, BR-20550900 Maracana, RJ, Brazil
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2022年 / 174卷
关键词
Foliations on projective spaces; Spaces of foliations; Degree three foliations; IRREDUCIBLE COMPONENTS; HOLOMORPHIC FOLIATIONS; STABILITY; SINGULARITIES;
D O I
10.1016/j.bulsci.2021.103092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a structure theorem for degree three codimension one foliations on projective spaces of dimension n >= 3, extending a result by Loray, Pereira, and Touzet for degree three foliations on P-3. We show that the space of codimension one foliations of degree three on P-n, n >= 3, has exactly 18 distinct irreducible components parameterizing foliations without rational first integrals, and at least 6 distinct irreducible components parameterizing foliations with rational first integrals. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:39
相关论文
共 25 条
  • [1] Irreducible components of the space of foliations associated to the affine Lie algebra
    Calvo-Andrade, O
    Cerveau, D
    Giraldo, L
    Neto, AL
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 987 - 1014
  • [2] IRREDUCIBLE COMPONENTS OF THE SPACE OF HOLOMORPHIC FOLIATIONS
    CALVOANDRADE, O
    [J]. MATHEMATISCHE ANNALEN, 1994, 299 (04) : 751 - 767
  • [3] Irreducible components of the space of holomorphic foliations of degree two in CP(n), n>=3
    Cerveau, D
    Neto, AL
    [J]. ANNALS OF MATHEMATICS, 1996, 143 (03) : 577 - 612
  • [4] Cerveau D, 2013, ANN SCUOLA NORM-SCI, V12, P1
  • [5] Stability Of Branched Pull-Back Projective Foliations
    Costa e Silva, W.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 29 - 44
  • [6] Transversely affine foliations on projective manifolds
    Cousin, Gael
    Pereira, Jorge Vitorio
    [J]. MATHEMATICAL RESEARCH LETTERS, 2014, 21 (05) : 985 - 1014
  • [7] Singularities of logarithmic foliations
    Cukierman, F
    Soares, MG
    Vainsencher, I
    [J]. COMPOSITIO MATHEMATICA, 2006, 142 (01) : 131 - 142
  • [8] Cukierman F., 2009, ANN FAC SCI TOULOUSE, V18, P685
  • [9] STABILITY OF LOGARITHMIC DIFFERENTIAL ONE-FORMS
    Cukierman, Fernando
    Gargiulo Acea, Javier
    Massri, Cesar
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (09) : 6289 - 6308
  • [10] STABILITY OF HOLOMORPHIC FOLIATIONS WITH SPLIT TANGENT SHEAF
    Cukierman, Fernando
    Pereira, Jorge Vitorio
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (02) : 413 - 439