Compact Toeplitz operators with unbounded symbols

被引:0
作者
Cima, JA [1 ]
Cuckovic, Z
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
Toeplitz operators; compact operators; Hilbert-Schmidt operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct bounded Toeplitz operators on the Bergman space L-n(2) on the unit disk, whose symbols are unbounded functions. These opera- tors can be compact and in some cases Hilbert-Schmidt. In fact we show that for any (essentially unbounded) function H epsilon L-2 there is a set Gamma in the unit disk such that the (essentially unbounded) function given by h = chi(Gamma)H is the symbol for a compact Toeplitz operator on L-a(2).
引用
收藏
页码:431 / 440
页数:10
相关论文
共 8 条
[1]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[2]   Bergman-Toeplitz operators: Radial component influence [J].
Grudsky, S ;
Vasilevski, N .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (01) :16-33
[3]   TRACE IDEAL CRITERIA FOR TOEPLITZ-OPERATORS [J].
LUECKING, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 73 (02) :345-368
[4]   Compact operators on Bergman spaces [J].
Miao, J ;
Zheng, DC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (01) :61-79
[5]   Compact Toeplitz operators on Bergman spaces [J].
Stroethoff, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :151-160
[6]  
ZHU K, 1990, OPERATOR THEORY FUNC
[7]   The Berezin transform and radial operators [J].
Zorboska, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :793-800
[8]  
Zorboska Nina, 2003, INT J MATH SCI, P2929, DOI [10.1155/S0161171203212035.784,785, DOI 10.1155/S0161171203212035.784,785]