Improving the Met Office's Forecast Ocean Assimilation Model (FOAM) with the assimilation of satellite-derived sea-ice thickness data from CryoSat-2 and SMOS in the Arctic

被引:0
作者
Mignac, Davi [1 ]
Martin, Matthew [1 ]
Fiedler, Emma [1 ]
Blockley, Ed [1 ]
Fournier, Nicolas [1 ]
机构
[1] Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
基金
欧盟地平线“2020”;
关键词
1. Tools and methods: data assimilation; general circulation model experiments; observations; remote sensing; 2. Scale: global; 3. Physical phenomenon: ice/icing; SNOW DEPTH; ATMOSPHERIC UNCERTAINTY; SYSTEM; FREEBOARD; IMPACT;
D O I
10.1002/qj.44252
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Derived from two complementary satellites, CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS), sea ice thickness (SIT) data are assimilated into the Met Office's global ocean-sea ice forecasting system, FOAM, using a 3D-Var assimilation scheme, NEMOVAR. CryoSat-2 along-track SITs, which are converted from freeboard measurements using the model snow depth, and a daily, gridded SMOS SIT product are used in the assimilation to constrain the Arctic sea ice thickness. When using only CryoSat-2 assimilation, SIT forecast fields within the ice pack are greatly improved with respect to independent airborne measurements. However, the positive impacts of CryoSat-2 assimilation in thick ice regions are counteracted by an SIT overestimation in areas of thin ice, due to biased freeboard measurements there. Adding the SMOS assimilation results in much thinner SITs in those regions, which performs better than the control when compared to SIT objective analyses and mooring measurements in the Beaufort and Barents Seas. Furthermore, SMOS assimilation enhances the short-term predictive skill of the marginal sea-ice concentration relative to the control. This is translated into a consistent retreat of the sea-ice covered areas in the 5-day forecasts during March 2017, which is in better agreement with independent ice edge products. This work successfully demonstrates improvements in FOAM sea ice when SIT observations from both CryoSat-2 and SMOS are assimilated, representing an important step towards the operational implementation of SIT assimilation within Met Office forecasting systems.
引用
收藏
页数:24
相关论文
共 69 条
[51]  
Rothrock DA, 2003, J GEOPHYS RES-OCEANS, V108, DOI [10.1029/2001JC001208, 10.1029/2004JC002282]
[52]   New Trans-Arctic shipping routes navigable by midcentury [J].
Smith, Laurence C. ;
Stephenson, Scott R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (13) :E1191-E1195
[53]   UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions [J].
Storkey, David ;
Blaker, Adam T. ;
Mathiot, Pierre ;
Megann, Alex ;
Aksenov, Yevgeny ;
Blockley, Edward W. ;
Calvert, Daley ;
Graham, Tim ;
Hewitt, Helene T. ;
Hyder, Patrick ;
Kuhlbrodt, Till ;
Rae, Jamie G. L. ;
Sinha, Bablu .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (08) :3187-3213
[54]   Changing state of Arctic sea ice across all seasons [J].
Stroeve, Julienne ;
Notz, Dirk .
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (10)
[55]   Assimilating satellite concentration data into an Arctic sea ice mass balance model, 1979-1985 [J].
Thomas, D ;
Martin, S ;
Rothrock, D ;
Steele, M .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C9) :20849-20868
[56]   SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification [J].
Tian-Kunze, X. ;
Kaleschke, L. ;
Maass, N. ;
Makynen, M. ;
Serra, N. ;
Drusch, M. ;
Krumpen, T. .
CRYOSPHERE, 2014, 8 (03) :997-1018
[57]   Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data [J].
Tilling, Rachel L. ;
Ridout, Andy ;
Shepherd, Andrew .
ADVANCES IN SPACE RESEARCH, 2018, 62 (06) :1203-1225
[58]   Near-real-time Arctic sea ice thickness and volume from CryoSat-2 [J].
Tilling, Rachel L. ;
Ridout, Andy ;
Shepherd, Andrew .
CRYOSPHERE, 2016, 10 (05) :2003-2012
[59]   An assessment of ten ocean reanalyses in the polar regions [J].
Uotila, Petteri ;
Goosse, Hugues ;
Haines, Keith ;
Chevallier, Matthieu ;
Barthelemy, Antoine ;
Bricaud, Clement ;
Carton, Jim ;
Fuckar, Neven ;
Garric, Gilles ;
Iovino, Doroteaciro ;
Kauker, Frank ;
Korhonen, Meri ;
Lien, Vidar S. ;
Marnela, Marika ;
Massonnet, Francois ;
Mignac, Davi ;
Peterson, K. Andrew ;
Sadikni, Remon ;
Shi, Li ;
Tietsche, Steffen ;
Toyoda, Takahiro ;
Xie, Jiping ;
Zhang, Zhaoru .
CLIMATE DYNAMICS, 2019, 52 (3-4) :1613-1650
[60]   The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations [J].
Walters, D. N. ;
Best, M. J. ;
Bushell, A. C. ;
Copsey, D. ;
Edwards, J. M. ;
Falloon, P. D. ;
Harris, C. M. ;
Lock, A. P. ;
Manners, J. C. ;
Morcrette, C. J. ;
Roberts, M. J. ;
Stratton, R. A. ;
Webster, S. ;
Wilkinson, J. M. ;
Willett, M. R. ;
Boutle, I. A. ;
Earnshaw, P. D. ;
Hill, P. G. ;
MacLachlan, C. ;
Martin, G. M. ;
Moufouma-Okia, W. ;
Palmer, M. D. ;
Petch, J. C. ;
Rooney, G. G. ;
Scaife, A. A. ;
Williams, K. D. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) :919-941