Random minimum length spanning trees in regular graphs

被引:42
|
作者
Beveridge, A [1 ]
Frieze, A
McDiarmid, C
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Oxford, Dept Stat, Oxford OX1 2JD, England
基金
美国国家科学基金会;
关键词
AMS Subject Classification (1991) Classes:  05C80, 60C05;
D O I
10.1007/PL00009825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a connected r-regular n-vertex graph G with random independent edge lengths, each uniformly distributed on (0,1). Let mst(G) be the expected length of a minimum spanning tree. We show that mst(G) can be estimated quite accurately under two distinct circumstances. Firstly, if r is large and G has a modest edge expansion property then mst(G) similar to n/r zeta(3), where zeta(3) = Sigma(j=1)(infinity) j(-3) similar to 1.202. Secondly, if G has large girth then there exists an explicitly defined constant c(r) such that mst(G) similar to c(r)n. We find in particular that c(3) = 9/2 - 6log2 similar to 0.341.
引用
收藏
页码:311 / 333
页数:23
相关论文
共 50 条