Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensional lattices: Universality of the transition

被引:52
作者
Matoz-Fernandez, D. A. [1 ]
Linares, D. H. [1 ]
Ramirez-Pastor, A. J. [1 ]
机构
[1] Univ Nacl San Luis, CONICET, Inst Fis Aplicada, Dept Fis, RA-5700 San Luis, Argentina
关键词
D O I
10.1209/0295-5075/82/50007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior and universality for the isotropic-nematic phase transition in a system of long straight rigid rods of length k (k-mers) on two-dimensional lattices. The nematic phase, characterized by a big domain of parallel k-mers, is separated from the isotropic state by a continuous transition occurring at a finite density. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the transition belongs to the 2D Ising universality class for square lattices and to the three-state Potts universality class for triangular lattices. Copyright (c) EPLA, 2008.
引用
收藏
页数:5
相关论文
共 22 条
[1]  
BINDER K, 1984, TOPICS CURRENT PHYS, V36
[2]  
Fisher M.E., 1971, Critical Phenomena, P1
[3]  
Flory P J., PRINCIPLES POLYM CHE
[4]   Thermodynamics of high polymer solutions [J].
Flory, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1942, 10 (01) :51-61
[5]   STATISTICAL THERMODYNAMICS OF SEMI-FLEXIBLE CHAIN MOLECULES [J].
FLORY, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 234 (1196) :60-73
[6]   Thermodynamics of high polymer solutions [J].
Flory, PJ .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (08) :660-661
[7]   EVIDENCE FOR ALGEBRAIC ORIENTATIONAL ORDER IN A 2-DIMENSIONAL HARD-CORE NEMATIC [J].
FRENKEL, D ;
EPPENGA, R .
PHYSICAL REVIEW A, 1985, 31 (03) :1776-1787
[8]   On the orientational ordering of long rods on a lattice [J].
Ghosh, A. ;
Dhar, D. .
EPL, 2007, 78 (02)
[9]   GEOMETRY OF RANDOM SEQUENTIAL ADSORPTION [J].
HINRICHSEN, EL ;
FEDER, J ;
JOSSANG, T .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (5-6) :793-827
[10]   Theory of solutions of high polymers [J].
Huggins, ML .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1942, 64 :1712-1719