On Lagrange's theorem with prime variables

被引:48
作者
Liu, JY [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1093/qmath/hag028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is conjectured that Lagrange's theorem on four squares is true for prime variables, that is, every large integer n with n equivalent to 4 (mod 24) is the sum of four squares of primes. In this paper, the size for the exceptional set in the above conjecture is reduced to O(N2/5+epsilon). The new ingredients include an iterative method to treat the enlarged major arcs, and a hybrid estimate for Dirichlet polynomials.
引用
收藏
页码:453 / 462
页数:10
相关论文
共 22 条
[1]   On a sum of three prime squares [J].
Bauer, C ;
Liu, MC ;
Zhan, T .
JOURNAL OF NUMBER THEORY, 2000, 85 (02) :336-359
[2]  
BOMBIERI E, 1974, ASTERISQUE, V18
[3]  
BRUDERN J, 1994, J REINE ANGEW MATH, V454, P59
[4]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[5]  
Greaves G., 1976, ACTA ARITH, V29, P257
[6]  
Heath-Brown DR, 2003, J REINE ANGEW MATH, V558, P159
[7]   PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY [J].
HEATHBROWN, DR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06) :1365-1377
[8]  
HUA LK, 1938, Q J MATH OXFORD SER, V9, P68
[9]  
KOVALCHIK FB, 1982, ZAP NAUCHN SEM LENIN, V116, P163
[10]  
KOVALCHIK FB, 1982, ZAP NAUCHN SEM LENIN, V116, P86