Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater

被引:44
作者
Koul, Yamini [1 ,2 ]
Devda, Viralkunvar [1 ,2 ]
Varjani, Sunita [1 ]
Guo, Wenshan [3 ]
Huu Hao Ngo [3 ]
Taherzadeh, Mohammad J. [4 ]
Chang, Jo-Shu [5 ]
Wong, Jonathan W. C. [6 ,7 ]
Bilal, Muhammad [8 ]
Kim, Sang-Hyoun [9 ]
Xuan-Thanh Bui [10 ,11 ]
Parra-Saldivar, Roberto [12 ]
机构
[1] Gujarat Pollut Control Board, Paryavaran Bhavan, Gandhinagar 382010, India
[2] Cent Univ Gujarat, Sch Environm & Sustainable Dev, Gandhinagar, India
[3] Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Sydney, NSW, Australia
[4] Univ Boras, Swedish Ctr Resource Recovery, Boras, Sweden
[5] Natl Cheng Kung Univ, Dept Chem Engn, Tainan, Taiwan
[6] Hong Kong Baptist Univ, Inst Bioresource & Agr, Hong Kong, Peoples R China
[7] Hong Kong Baptist Univ, Dept Biol, Hong Kong, Peoples R China
[8] Huaiyin Inst Technol, Sch Life Sci & Food Engn, Huaian, Peoples R China
[9] Yonsei Univ, Sch Civil & Environm Engn, Seoul, South Korea
[10] Ho Chi Minh City Univ Technol Hcmut, Fac Environm & Nat Resources, Ho Chi Minh City, Vietnam
[11] Vietnam Natl Univ Ho Chi Minh Vnu Hcm, Key Lab Adv Waste Treatment Technol, Ho Chi Minh City, Vietnam
[12] Tecnol Monterrey, Escuela Ingn & Ciencias Ctr Biotecnol FEMSA, Campus Monterrey, Monterrey, Mexico
关键词
Industrial effluents; electrochemical technology; anaerobic digestion; resources; environmental sustainability; LIFE-CYCLE ASSESSMENT; HYDROGEN-PRODUCTION; FOOD WASTE; BIOHYDROGEN PRODUCTION; ANAEROBIC-DIGESTION; CIRCULAR ECONOMY; BIOELECTROCHEMICAL SYSTEMS; VERSATILE TECHNOLOGY; BIOGAS PRODUCTION; NITROGEN REMOVAL;
D O I
10.1080/21655979.2022.2051842
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Wastewater is one of the most common by-products of almost every industrial process. Treatment of wastewater alone, before disposal, necessitates an excess of energy. Environmental concerns over the use of fossil fuels as a source of energy have prompted a surge in demand for alternative energy sources and the development of sophisticated procedures to extract energy from unconventional sources. Treatment of municipal and industrial wastewater alone accounts for about 3% of global electricity use while the amount of energy embedded in the waste is at least 2-4 times greater than the energy required to treat the same effluent. The microbial electrolysis cell (MEC) is one of the most efficient technologies for waste-to-product conversion that uses electrochemically active bacteria to convert organic matter into hydrogen or a variety of by-products without polluting the environment. This paper highlights existing obstacles and future potential in the integration of Microbial Electrolysis Cell with other processes like anaerobic digestion coupled system, anaerobic membrane bioreactor and thermoelectric micro converter.
引用
收藏
页码:8115 / 8134
页数:20
相关论文
共 129 条
[11]   Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell [J].
Cerrillo, Miriam ;
Vinas, Marc ;
Bonmati, August .
BIORESOURCE TECHNOLOGY, 2016, 216 :362-372
[12]   Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production [J].
Chandrasekhar, K. ;
Mohan, S. Venkata .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (22) :11411-11422
[13]   Exploring the role of microbial biofilm for industrial effluents treatment [J].
Chattopadhyay, Indranil ;
Banu, Rajesh J. ;
Usman, T. M. Mohamed ;
Varjani, Sunita .
BIOENGINEERED, 2022, 13 (03) :6420-6440
[14]   H2 production by the thermoelectric microconverter coupled with microbial electrolysis cell [J].
Chen, Yun ;
Chen, Man ;
Shen, Nan ;
Zeng, Raymond J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) :22760-22768
[15]   Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics [J].
Cheng, Dongle ;
Ngo, Huu Hao ;
Guo, Wenshan ;
Lee, Duujong ;
Duc Long Nghiem ;
Zhang, Jian ;
Liang, Shuang ;
Varjani, Sunita ;
Wang, Jie .
BIORESOURCE TECHNOLOGY, 2020, 311 (311)
[16]   Biocatalysed sulphate removal in a BES cathode [J].
Coma, M. ;
Puig, S. ;
Pous, N. ;
Balaguer, M. D. ;
Colprim, J. .
BIORESOURCE TECHNOLOGY, 2013, 130 :218-223
[17]   Improved hydrogen production in the single-chamber microbial electrolysis cell with inhibition of methanogenesis under alkaline conditions [J].
Cui, Wanjun ;
Liu, Guangli ;
Zeng, Cuiping ;
Lu, Yaobin ;
Luo, Haiping ;
Zhang, Renduo .
RSC ADVANCES, 2019, 9 (52) :30207-30215
[18]   Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives [J].
Devda, Viralkunvar ;
Chaudhary, Kashika ;
Varjani, Sunita ;
Pathak, Bhawana ;
Patel, Anil Kumar ;
Singhania, Reeta Rani ;
Taherzadeh, Mohammad J. ;
Ngo, Huu Hao ;
Wong, Jonathan W. C. ;
Guo, Wenshan ;
Chaturvedi, Preeti .
BIOENGINEERED, 2021, 12 (01) :4697-4718
[19]   A novel energy assessment of urban wastewater treatment plants [J].
Di Fraia, S. ;
Massarotti, N. ;
Vanoli, L. .
ENERGY CONVERSION AND MANAGEMENT, 2018, 163 :304-313
[20]   Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J].
Ditzig, Jenna ;
Liu, Hong ;
Logan, Bruce E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2296-2304