Paleostress magnitudes in folded sedimentary rocks

被引:50
|
作者
Amrouch, Khalid [1 ,2 ,3 ]
Beaudoin, Nicolas [1 ,3 ]
Lacombe, Olivier [1 ,3 ]
Bellahsen, Nicolas [1 ,3 ]
Daniel, Jean-Marc [2 ]
机构
[1] UPMC Sorbonne Univ, UMR 7193, ISTEP, F-75005 Paris, France
[2] IFP Energies Nouvelles, Geol Geochem Geophys Direct, F-92852 Rueil Malmaison, France
[3] CNRS, UMR 7193, ISTEP, Paris, France
关键词
SHEEP MOUNTAIN ANTICLINE; CALCITE TWINS; DEFORMATION MECHANISMS; STRESS MAGNITUDES; THRUST BELTS; SLIP; FLOW; USA;
D O I
10.1029/2011GL048649
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Using Sheep Mountain Anticline (Wyoming, USA) as a case study, we propose a new approach to quantify effective paleo-principal stress magnitudes in the uppermost crust. The proposed mechanical scenario relies on a well-documented kinematic and chronological sequence of development of faults, fractures and microstructures in the folded strata. Paleostress orientations and regimes as well as differential stress magnitudes based on calcite twinning paleopiezometry are combined with rock mechanics data in a Mohr construction to derive principal stress magnitudes related to the successive steps of layer-parallel shortening and to late stage fold tightening. Such quantification also provides original insights into the evolution of the fluid (over) pressure and amount of syn-folding erosion. Citation: Amrouch, K., N. Beaudoin, O. Lacombe, N. Bellahsen, and J.-M. Daniel (2011), Paleostress magnitudes in folded sedimentary rocks, Geophys. Res. Lett., 38, L17301, doi: 10.1029/2011GL048649.
引用
收藏
页数:6
相关论文
共 36 条
  • [11] Magnetic characterisation of folded aeolian sandstones: Interpretation of magnetic fabrics in diamagnetic rocks
    Callot, J-P
    Robion, P.
    Sassi, W.
    Guiton, M. L. E.
    Faure, J-L
    Daniel, J-M
    Mengus, J-M
    Schmitz, J.
    TECTONOPHYSICS, 2010, 495 (3-4) : 230 - 245
  • [12] Investigating pressure magnitudes at depth for oblique impacts into layered targets: Applications to terrestrial impacts in sedimentary targets
    Stickle, A. M.
    Schultz, P. H.
    METEORITICS & PLANETARY SCIENCE, 2013, 48 (09) : 1638 - 1650
  • [13] Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure
    Benavente, D.
    Pla, C.
    Cueto, N.
    Galvan, S.
    Martinez-Martinez, J.
    Garcia-del-Cura, M. A.
    Ordonez, S.
    ENGINEERING GEOLOGY, 2015, 195 : 301 - 311
  • [14] Reactive Transport Modelling of Elevated Dissolved Sulphide Concentrations in Sedimentary Basin Rocks
    Xie, Mingliang
    Su, Danyang
    MacQuarrie, Kerry T. B.
    Mayer, K. Ulrich
    GEOFLUIDS, 2023, 2023
  • [15] Modeling of the thermohydromechanical-chemical response of Ontario sedimentary rocks to future glaciations
    Nasir, Othman
    Fall, Mamadou
    Nguyen, T. Son
    Evgin, Erman
    CANADIAN GEOTECHNICAL JOURNAL, 2015, 52 (07) : 836 - 850
  • [16] Depth dependent hydraulic conductivity in fractured sedimentary rocks-a geomechanical approach
    Cheema, Tariq
    ARABIAN JOURNAL OF GEOSCIENCES, 2015, 8 (08) : 6267 - 6278
  • [17] The mathematical model of stress sensitivities on tight reservoirs of different sedimentary rocks and its application
    Liu Kai
    Yin Daiyin
    Sun Yeheng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 193
  • [18] Effects of sedimentary interfaces on fracture pattern, linkage, and cluster formation in peritidal carbonate rocks
    Larsen, Belinda
    Gudmundsson, Agust
    Grunnaleite, Ivar
    Saelen, Gunnar
    Talbot, Michael R.
    Buckley, Simon J.
    MARINE AND PETROLEUM GEOLOGY, 2010, 27 (07) : 1531 - 1550
  • [19] Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt
    Abbady, Adel G. E.
    APPLIED RADIATION AND ISOTOPES, 2010, 68 (10) : 2020 - 2024
  • [20] Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)
    Taborik, P.
    Lenart, J.
    Blecha, V.
    Vilhelm, J.
    Tursky, O.
    GEOMORPHOLOGY, 2017, 276 : 59 - 70