Complexified gravity in noncommutative spaces

被引:94
作者
Chamseddine, AH [1 ]
机构
[1] Amer Univ Beirut, Ctr Adv Math Sci, Beirut, Lebanon
[2] Amer Univ Beirut, Dept Phys, Beirut, Lebanon
关键词
D O I
10.1007/s002200100393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The presence of a constant background antisymmetric tenser for open strings or D-branes forces the space-time coordinates to be noncommutative. This effect is equivalent to replacing ordinary products in the effective theory by the deformed star product. An immediate consequence of this is that all fields get complexified. The only possible noncommutative Yang-Mills theory is the one with U(N) gauge symmetry. By applying this idea to gravity one discovers that the metric becomes complex. We show in this article that this procedure is completely consistent;l;nd one can obtain complexified gravity by gauging the symmetry U(1, D - 1) instead of the usual SO(1, D - 1). The final theory depends on a Hermitian tenser containing both the symmetric metric and antisymmetric tenser. In contrast to other theories of nonsymmetric gravity the action is both unique and gauge invariant. The results are then generalized to noncommutative spaces.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 19 条
  • [1] Ardalan F., 1999, J HIGH ENERGY PHYS, V9902, P016
  • [2] STRING LOOP CORRECTIONS TO BETA-FUNCTIONS
    CALLAN, CG
    LOVELACE, C
    NAPPI, CR
    YOST, SA
    [J]. NUCLEAR PHYSICS B, 1987, 288 (3-4) : 525 - 550
  • [3] THE GRAVITATIONAL SECTOR IN THE CONNES-LOTT FORMULATION OF THE STANDARD MODEL
    CHAMSEDDINE, AH
    FROHLICH, J
    GRANDJEAN, O
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6255 - 6275
  • [4] GRAVITY IN NONCOMMUTATIVE GEOMETRY
    CHAMSEDDINE, AH
    FELDER, G
    FROHLICH, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) : 205 - 217
  • [5] Non-commutative geometry from 0-branes in a background B-field
    Cheung, YKE
    Krogh, M
    [J]. NUCLEAR PHYSICS B, 1998, 528 (1-2) : 185 - 196
  • [6] Non-commutative open string and D-brane
    Chu, CS
    Ho, PM
    [J]. NUCLEAR PHYSICS B, 1999, 550 (1-2) : 151 - 168
  • [7] NONCOMMUTATIVE GEOMETRY AND REALITY
    CONNES, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6194 - 6231
  • [8] Connes A., 1998, J HIGH ENERGY PHYS, V02, P003, DOI 10.1088/1126-6708/1998/02/003
  • [9] NONSYMMETRIC GRAVITY THEORIES - INCONSISTENCIES AND A CURE
    DAMOUR, T
    DESER, S
    MCCARTHY, J
    [J]. PHYSICAL REVIEW D, 1993, 47 (04): : 1541 - 1556
  • [10] Douglas MR, 1998, J HIGH ENERGY PHYS