Sub- and superadditive properties of Euler's gamma function

被引:19
作者
Alzer, Horst
机构
[1] D-51545 Waldbröl
关键词
gamma and psi functions; sub; and superadditive; convex; inequalities;
D O I
10.1090/S0002-9939-07-09057-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let center dot center dot 0 and 0 center dot center dot not equal 1 be real numbers. The inequality (GRAPHICS) holds for all positive real numbers center dot center dot center dot if and only if center dot >= max( 1 center dot center dot). The reverse inequality is valid for all center dot center dot center dot center dot 0 if and only if center dot <= min( 1 center dot center dot).
引用
收藏
页码:3641 / 3648
页数:8
相关论文
共 29 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS F, DOI DOI 10.1119/1.15378
[2]   Sub- and superadditive properties of Fejer's sine polynomial [J].
Alzer, H ;
Koumandos, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :261-268
[3]   A subadditive property of the gamma function [J].
Alzer, H ;
Ruscheweyh, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :564-577
[5]  
[Anonymous], AEQUATIONES MATH
[6]  
[Anonymous], 1998, ATTI CONVEGNI LINCEI
[7]  
[Anonymous], 1960, PAC J MATH
[8]   SUPERADDITIVITY INEQUALITIES [J].
BECKENBACH, EF .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (02) :421-&
[9]  
Bruckner A., 1964, Proc. Amer. Math. Soc., V15, P61
[10]  
Bruckner A. M., 1962, Proceedings of the American Mathematical Society, V13, P126, DOI DOI 10.2307/2033788